• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤矿安全生产成功学理论及动态安全熵模型

吴大明

吴大明. 煤矿安全生产成功学理论及动态安全熵模型[J]. 煤矿安全, 2019, 50(6): 289-292.
引用本文: 吴大明. 煤矿安全生产成功学理论及动态安全熵模型[J]. 煤矿安全, 2019, 50(6): 289-292.
WU Daming. Coal Mine Work Safety Success Theory and Dynamic Safety Entropy Model[J]. Safety in Coal Mines, 2019, 50(6): 289-292.
Citation: WU Daming. Coal Mine Work Safety Success Theory and Dynamic Safety Entropy Model[J]. Safety in Coal Mines, 2019, 50(6): 289-292.

煤矿安全生产成功学理论及动态安全熵模型

Coal Mine Work Safety Success Theory and Dynamic Safety Entropy Model

  • 摘要: 传统安全生产理论对促进煤矿安全生产发展起到了重大作用,但随着社会发展进步,传统安全生产理论的“边际效应”逐渐呈现,事故预防投入收益效果不断降低。为了提高煤矿安全生产发展水平,从传统安全生产理论辨析出发,应用归纳和演绎对立统一的辩证思维方法,提出了基于演绎法的煤矿安全生产成功学理论和系统,完善了安全生产理论体系。为进一步验证,应用物理热力学的熵理论对安全生产理论做了解释,构建了动态安全熵模型,论证了煤矿安全生产成功学理论的科学性和实用性。研究内容可为煤矿安全生产大数据应用和安全生产“零事故”提供基础理论参考。
    Abstract: The traditional work safety theory has played a significant role in guiding the development of coal mine work safety. However, with the development of society, the “marginal effect” of traditional work safety theory gradually appears and the profit of accident prevention investment has been declining. Based on the analysis of traditional work safety theory models and apply the dialectical thinking method of inductive and deductive unity, the coal mine work safety success theory and system have been proposed by the deductive method, which further improves the work safety theory. To further verify, the entropy theory of physical thermodynamics is used to explain the work safety theory, and the dynamic safety entropy model is constructed to demonstrate the scientificity and practicability of the coal mine work safety success theory. The research can provide a basic theoretical reference for the big data application of coal mine work safety and “zero accident” of work safety.
  • [1] Paul S. Occupational safety theories, models and metaphors in the three decades since World War II, in the United States, Britain and the Netherlands: A literature review[J]. Safety Science, 2014, 62 (2):16.
    [2] 吴大明.美国矿山分级分类监察与煤矿重大事故防范对策研究[J].中国煤炭,2017,43(12):165-169.
    [3] Zhang G, Yau K K, Chen G. Risk factors associated with traffic violations and accident severity in China[J]. Accident Analysis & Prevention, 2013, 59(10):18.
    [4] Eirik B. An evaluation of the effects on safety of using safety standards in major hazard industries[J]. Safety Science, 2013, 59(4):173-178.
    [5] 吴大明.基于灰色定权聚类的我国产煤省区安全生产水平分析[J].煤矿安全,2017,48(11):237-240.
    [6] Heinrich. Industrial Accident Prevention: A scientific approach[M]. New York: McGraw-Hill, 1931.
    [7] Nancy L. A new accident model for engineering safer systems[J]. Safety Science, 2004, 42(4): 237-270.
    [8] Benner L. Accident Investigations: Multilinear Events Sequencing Methods[J]. Journal of Safety Research, 1975, 7(2):67-73.
    [9] 吴大明.煤矿安全隐患概念辨析与双重预防机制应用研究[J].中国煤炭,2017,43(9):112-115.
    [10] Yuting C. Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry[J]. Journal of Safety Research, 2017, 61(6):167-176.
    [11] Stefanie H. Learning From Organizational Incidents: Resilience Engineering for High-Risk Process Environments[J]. Process Safety Progress, 2009, 28(1):90-95.
    [12] Jonas Poelmans. Formal Concept Analysis in knowledge processing: A survey on models and techniques[J]. Expert Systems with Applications, 2013, 40 (11): 6601-6623.
    [13] Grandy. Time Evolution In Macroscopic Systems. II: The Entropy[J]. Foundations of Physics, 2004, 34(1):21-57.
    [14] Denbigh K, Denbigh J. Entropy in Relation to Incomplete Knowledge[M]. Cambridge UK: Cambridge University Press, 1985.
    [15] 杨川峰.煤矿提升机坠罐事故技术管理原因分析[J]中州煤炭,2014(4):51-53.
计量
  • 文章访问数:  135
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2019-06-19

目录

    /

    返回文章
    返回