矿井高密度三维电法成像数值模拟及应用

    Research and Application of Numerical Simulation of High Density Three-dimensional Electrical Imaging in Mine

    • 摘要: 为了探测岩层低阻异常体,防治矿井水害,使用Visual Fortran软件编辑,建立4个相关地电模型,择取二极装置,仿造实际现场数据采集的跑极模式,对自建模型进行基于有限元理论的正演模拟研究,尤其是要辅以水层反演方式进行立体成像,多方向切片处理三维数据体,对比构建模型的差异与契合点,分析限制条件下巷道影响与全空间效应的相互叠加性。结果表明:排除异常现象得到的可视立体图像,能更好地显示陷落柱异常体的响应特征,更清晰地展现低阻未明体的分布范围,可为井下电法勘探数据解释的准确性,提供可靠的理论依据。

       

      Abstract: To detect low resistivity abnormal bodies in rock strata and prevent mine water hazards, four relevant geoelectric models are established by using Visual Fortran software. Dipole devices are selected to imitate the pole-running mode of actual field data acquisition. Forward modeling based on finite element theory is carried out for the self-modeling model, especially with the aid of water layer inversion. Stereo imaging and multi-directional slicing are used to process three-dimensional data volume. The differences and coincidence points of the model are compared. The overlap between the effect of roadway and the effect of whole space under the restrictive conditions is analyzed. The results show that the visual stereo image obtained by eliminating abnormal phenomena can better display the response characteristics of the abnormal body of collapse column and be clearer. It can provide reliable theoretical basis for the accuracy of data interpretation of underground electrical prospecting by clearly displaying the distribution range of low resistivity undetermined bodies.

       

    /

    返回文章
    返回