• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

温度对无烟煤等温脱水影响的试验研究

李鹏

李鹏. 温度对无烟煤等温脱水影响的试验研究[J]. 煤矿安全, 2019, 50(5): 35-38.
引用本文: 李鹏. 温度对无烟煤等温脱水影响的试验研究[J]. 煤矿安全, 2019, 50(5): 35-38.
LI Peng. Experimental Study on Influence of Temperature on Isothermal Dehydration of Anthracite[J]. Safety in Coal Mines, 2019, 50(5): 35-38.
Citation: LI Peng. Experimental Study on Influence of Temperature on Isothermal Dehydration of Anthracite[J]. Safety in Coal Mines, 2019, 50(5): 35-38.

温度对无烟煤等温脱水影响的试验研究

Experimental Study on Influence of Temperature on Isothermal Dehydration of Anthracite

  • 摘要: 通过对外加平衡水无烟煤在等温干燥作用下水分迁移途径与变化规律的研究,建立了无烟煤脱水的数学模型,取0.2~0.25 mm粒径无烟煤,分别在75、105 ℃等条件下进行失水规律试验,得到不同温度条件下0.20~0.25 mm粒径煤样,临界含水率Xc1<含水率X<临界含水率Xc2阶段失水速率拟合曲线。试验所测同一粒径煤样,临界含水率Xc1<含水率X<临界含水率Xc2阶段失水速率v与温度T呈二次多项式关系,关系满足v=-0.000 3T2+0.062T-2.444 4,相关系数R2=0.902。由该公式可知同一粒径煤样90 ℃以下时提高温度可以显著加快煤样失水速度,当干燥温度提高到约90 ℃以上时为0.47 mm时,失水速度并未随温度的升高而显著增大。
    Abstract: In this paper, the mathematical model of anthracite dehydration was established through the study of the migration path and the change law of the anthracite coal under the effect of isothermal drying. The 0.2 to 0.25 mm anthracite coal was designed and the water loss test was carried out under the conditions of 75 ℃ and 105 ℃, respectively. The water loss rate fitting curve for coal sample with 0.20 to 0.25 mm particle diameter in Xc1<X< Xc2 stage under different temperature conditions is obtained. The experiment has measured the same size coal samples, and the water loss rate v and temperature T in Xc1<X<Xc2 stage have two polynomial relations, the relation satisfies v=-0.000 3T2+0.062T-2.444 4, the correlation coefficient is R2=0.902. The formula shows that the increase of temperature in the same size coal sample below 90 ℃ can significantly accelerate the coal sample losing water speed. When the drying temperature increased to about 90 ℃ above 0.47 mm, the rate of water loss did not increase significantly with the increase of temperature.
  • [1] 陈清如,刘炯天.中国洁净煤[M].徐州:中国矿业大学出版社,2009:1-3.
    [2] 王显政.中国煤炭工业发展面临的机遇与挑战[J].中国煤炭,2010,36(7):5-10.
    [3] 赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008,33(7):799-802.
    [4] Christian Vogt, Thomas Wild,Christian Bergins, et al. Mechanical/thermal dewatering of lignite. Part 4:Physico-chemical propertiesand pore structure during an acid treatment within the MTE process[J]. Fuel, 2012, 93:433-442.
    [5] 万永周.褐煤热压脱水工艺及机理研究[D].徐州:中国矿业大学,2012:10-17.
    [6] 李先春.褐煤提质及其燃烧行为特性的研究[D].大连:大连理工大学,2011:4-8.
    [7] Tahmasebi A, Yu J, Li X, et al. Experimental study on microwave drying of Chinese and Indonesian low-rank coals[J]. Fuel Processing Technology, 2011, 92(10):1821-1829.
    [8] 潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2006:515-523.
    [9] Ge L, Zhang Y, Wang Z, et al. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rankcoals[J]. Energy Conversion and Management, 2013,71: 84-91.
    [10] 余莉,明晓,蒋彦龙.等温对流联合干燥特性的数值模拟[J].重庆大学学报(自然科学版),2005,28(1):135-139.
  • 期刊类型引用(2)

    1. 张晓明,鲍庆国,甘建. 张集煤矿1301综放面采空区气体场分布规律研究. 煤. 2023(07): 1-6 . 百度学术
    2. 王丹娜,陈瑶,曹会君,王华锐. 基于ZigBee的医用高压氧舱氧气浓度自动控制系统. 中国医疗器械杂志. 2022(01): 47-51+75 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  126
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 发布日期:  2019-05-19

目录

    /

    返回文章
    返回