• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

保护层开采防突效果区域时空演化规律研究

郭怀广

郭怀广. 保护层开采防突效果区域时空演化规律研究[J]. 煤矿安全, 2019, 50(4): 186-190.
引用本文: 郭怀广. 保护层开采防突效果区域时空演化规律研究[J]. 煤矿安全, 2019, 50(4): 186-190.
GUO Huaiguang. Study on Spatiotemporal Evolution Laws of Anti-outburst Effect Area of Upper Protective Layer Mining[J]. Safety in Coal Mines, 2019, 50(4): 186-190.
Citation: GUO Huaiguang. Study on Spatiotemporal Evolution Laws of Anti-outburst Effect Area of Upper Protective Layer Mining[J]. Safety in Coal Mines, 2019, 50(4): 186-190.

保护层开采防突效果区域时空演化规律研究

Study on Spatiotemporal Evolution Laws of Anti-outburst Effect Area of Upper Protective Layer Mining

  • 摘要: 在煤层群开采中,利用保护层采动作用产生的“卸压增透”效应来提高煤层透气性是最具有效的措施。基于理论分析结合数值模拟的方法,研究贵州某矿区上保护层开采后,伏岩应力、应变的区域时空分布规律。结果表明:开采保护层后,伏岩区域存在应力集中区、过渡区和卸压区,根据建立的方程得出卸压区最大变形量为82.7 mm;伏岩部分区域应力(变)及变形量随着保护层开采有所恢复,表明区域增透卸压效果存在时效性和空间差异性;模拟伏岩最大变形量为80 mm,与理论计算结果基本一致。
    Abstract: In the mining of coal seam group, it is the most effective measure to improve the permeability of coal seam by utilizing the effect of “pressure relief and permeability improvement” produced by mining in protective layer. Based on the method of theoretical analysis and numerical simulation, this paper studies the spatial and temporal distribution of the stress and strain of the rock in Guizhou Mining Area. The results show that there are stress concentration zone, transition zone and pressure relief zone after mining protective seam; and the maximum deformation amount of the pressure relief zone is 82.7 mm according to the established equation. It is restored with the protective seam mining that the stress (strain) and deformation in the area of the protected coal seam, indicating that the effect of pressure relief and permeability improvement has the spatiotemporal difference. The maximum deformation of the protected coal seam is 80 mm, which is consistent with the theoretical result.
  • [1] 于不凡,王佑安.编煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [2] 孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):40-43.
    [3] 王永秀,齐庆新,徐刚,等.华丰矿保护层开采数值模拟研究[J].煤矿开采,2003,8(4):4-7.
    [4] 石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004,33(3):25-29.
    [5] 刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保,2005,32(6):6-9.
    [6] 刘泽功,袁亮,戴广龙,等.采场覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报(自然科学版),2004,24(4):10-15.
    [7] 涂敏,黄乃斌,刘宝安.远距离下保护层开采上覆煤岩体卸压效应研究[J].采矿与安全工程学报,2007,24(4):418-421.
    [8] 涂敏.煤层气卸压开采的采动岩体力学分析与应用研究[D].徐州:中国矿业大学,2008.
    [9] 郭世儒,茅献彪,缪盛凯,等.下保护层开采对上覆巷道围岩稳定性的影响[J].煤矿安全,2017,48(12):203-206.
    [10] 田富超.下保护层开采上覆煤岩位移传导效应特征研究[J].煤矿安全,2016,47(12):42-45.
    [11] 孙国文,罗甲渊,罗斌玉.采动岩层渗透率与应力耦合关系数值模拟研究[J].煤矿安全,2018,49(1):214-217.
    [12] 吴家浩,王兆丰,王立国,等.开采上保护层下伏煤岩应力效应演化规律[J].煤矿安全,2015,46(10):40.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  106
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 发布日期:  2019-04-19

目录

    /

    返回文章
    返回