高阶原生煤和构造煤等量吸附热分析

    Analysis on Isosteric Adsorption Heat of High-rank Normal Coal and Deformed Coal

    • 摘要: 对比研究了高阶原生煤和构造煤等量吸附热,进一步阐述了构造煤易于瓦斯突出的原因。主要结果如下:随着吸附量的增加,高阶原生煤和构造煤等量吸附热均呈现先缓慢增加,再快速增加的趋势;而随着瓦斯压力的增加,原生煤和构造煤等量吸附热呈现匀速增加的趋势;在不同吸附量和不同压力下,原生煤的等量吸附热均大于构造煤;说明原生煤表面与甲烷的作用力大于构造煤的,在相同压力下瓦斯分子更容易从构造煤表面脱离下来;构造煤中瓦斯运移主要受控于裂隙瓦斯渗流,在构造煤瓦斯治理时尽量采取增透措施。

       

      Abstract: In this paper, the isosteric heat of adsorption of the high-rank normal coal and deformed coal were analyzed. Then, the reasons for the deformed coal inducing gas outburst were expressed. The main results are as follows: with the increase of adsorption amount, the adsorption heat of high order normal coal and deformed coal presents a trend of slow increase first and then rapid increase. However, with the increase of gas pressure, the isosteric adsorption heat of coal samples increases at a constant speed. At different adsorption amounts and pressures, the isosteric adsorption heat of normal coal is greater than that of deformed coal. This indicates that the intermolecular forces between the methane molecules and the normal coal surface is greater than that of the deformed coal, and it is easier for the methane molecules to break off from the surface of deformed coal than that of normal coal under the same pressure. The gas migration in deformed coal is mainly controlled by the stage of gas seepage in fractures, so more measures for improving the capacity of seepage should be done for gas control of the deformed coal.

       

    /

    返回文章
    返回