千米级深井上保护层开采下伏煤层卸压效果研究
Study on Pressure Unloading Effect of Lower Coal Seam Under Upper Protective Layer in a Kilometer Deep Well
-
摘要: 为深入研究千米级深井上保护层开采下伏煤层卸压效果,以埋深超千米的平煤十二矿己14-31070工作面为依托,利用YHW19矿用本安型顶底板位移监测仪对其下伏己15煤层的膨胀变形量进行现场监测。结果表明,随着己14保护层工作面推进,下伏己15煤层膨胀变形量经历了初期平缓增长,中期迅速增长,后期趋于稳定3个阶段,且距采面15~45 m区域为保护层开采卸压主要影响区域,该区域内被保护煤层膨胀变形量受开采速度变化影响显著;己15煤层最大膨胀变形平均值为22.4 mm,最大膨胀变形量平均值为6.82‰,被保护层煤层卸压充分;数据点拟合发现,煤层膨胀变形量、单孔瓦斯浓度与瓦斯抽放总量在整个监测周期内均较好符合一元三次多项式的增长趋势,整个回采过程卸压特征明显,卸压效果显著。Abstract: To study the pressure unloading effect of lower coal seam under upper protective layer in the mine with the depth over 1 000 m, YHW19 mine-used intrinsically safe roof and floor displacement monitor is used to monitor the swelling deformation of the underlying Ji15 coal seam, which is based on the Ji14-31070 working face buried in No.12 coal mine with the depth over 1 000 meters. The results show that with the advance of the Ji14 protective layer, the swelling deformation of the lower seam Ji15 has experienced a slow growth in the early stage, the rapid growth in the middle period and the stable stage in the later period, and the area of 15 m to 45 m away from the mining face is the main influence area of protective seam mining pressure unloading. The swelling deformation of the protected seam in this area is significantly affected by the change of mining speed. The average value of maximum swelling deformation of Ji15 coal seam is 22.4 mm, and the average value of maximum swelling deformation is 6.82‰. The protected layer is fully unloaded. The data point fitting shows that the swelling deformation of coal seam, the gas concentration of single hole and the total gas drainage are in good accord with the growth trend of the three times polynomial with one element in the whole monitoring period. The effect of pressure unloading is obvious and the effect of pressure unloading is remarkable.
-
-
[1] 谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16. [2] 谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542. [3] 谢和平,高峰,鞠杨,等.深部开采的定量界定与分析[J].煤炭学报,2015,40(1):1-10. [4] 谢和平,高峰,鞠杨.深地岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2177. [5] 石必明.保护层开采覆岩变形移动特性及防突工程应用实践[M].北京:煤炭工业出版社,2008. [6] 宇不凡.开采保护层的认识与实践[M].北京:煤炭工业出版社,1986. [7] 国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009. [8] 宋卫华,赵健,刘晨阳,等.近距离下保护层开采卸压效果及可行性分析[J].辽宁工程技术大学学报,2016(10):1020-1025. [9] 贺爱萍,付华,路洋波,等.保护层开采被保护层膨胀变形分析方法[J].中国安全生产科学技术,2016,12(8):60-67. [10] 王长平.近距离上保护层开采下伏被保护层卸压效应研究[J].能源与环保,2018,40(5):64-66. [11] 张书金,李绍泉,李树清,等.煤层群双重保护层开采煤层膨胀变形规律实验研究[J].煤炭工程,2013,45(9):87-90. [12] 吴建亭.平顶山十矿下保护层开采上覆煤岩破裂变形规律[J].煤矿安全,2015,46(11):186-188. [13] 熊祖强,王文,李化敏.远程保护层开采上覆煤岩层移动规律[J].中国煤炭,2009(7):46-48. [14] 方昌才.保护层开采上覆煤岩变形移动及瓦斯抽采效果[J].安徽理工大学学报(自然科学版),2012(2):35-40. -
期刊类型引用(6)
1. 赵兵朝,陈迪,陈攀,王京滨,冯杰. 基于C#语言与ArcGIS Engine的开采沉陷预计系统开发. 煤矿安全. 2024(08): 184-190 . 本站查看
2. 赵阳,陈俊凝,韦启蒙. 浅埋煤层采动地表移动变形规律及电塔塔基稳定性研究. 矿业研究与开发. 2023(02): 121-127 . 百度学术
3. 王元贵. 浅埋煤层群开采覆岩结构破断特征与地表变形规律研究. 山西煤炭. 2023(01): 123-128 . 百度学术
4. 赵兵朝,马云祥,王海龙,侯恩科,王京滨,韦启蒙. 双煤层开采地表下沉影响因素分析. 矿业研究与开发. 2022(07): 120-124 . 百度学术
5. 甄泽,张杰. 薄基岩工作面开采覆岩运移规律. 陕西煤炭. 2020(04): 49-52 . 百度学术
6. 刘东海,邓念东,姚婷. 潞安矿区煤炭开采沉陷主要控制因素分析. 矿业安全与环保. 2020(05): 103-107 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 137
- HTML全文浏览量: 0
- PDF下载量: 1
- 被引次数: 9