• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

深部煤层开采软-硬-软互层组合底板应力分布与破坏特征模拟研究

王文苗, 张培森, 魏杰, 安羽枫

王文苗, 张培森, 魏杰, 安羽枫. 深部煤层开采软-硬-软互层组合底板应力分布与破坏特征模拟研究[J]. 煤矿安全, 2019, 50(2): 57-60,66.
引用本文: 王文苗, 张培森, 魏杰, 安羽枫. 深部煤层开采软-硬-软互层组合底板应力分布与破坏特征模拟研究[J]. 煤矿安全, 2019, 50(2): 57-60,66.
WANG Wenmiao, ZHANG Peisen, WEI Jie, AN Yufeng. Simulation Study on Stress Distribution and Failure Characteristics of Soft-hard-soft Interbedded Composite Floor in Deep Seam Mining[J]. Safety in Coal Mines, 2019, 50(2): 57-60,66.
Citation: WANG Wenmiao, ZHANG Peisen, WEI Jie, AN Yufeng. Simulation Study on Stress Distribution and Failure Characteristics of Soft-hard-soft Interbedded Composite Floor in Deep Seam Mining[J]. Safety in Coal Mines, 2019, 50(2): 57-60,66.

深部煤层开采软-硬-软互层组合底板应力分布与破坏特征模拟研究

Simulation Study on Stress Distribution and Failure Characteristics of Soft-hard-soft Interbedded Composite Floor in Deep Seam Mining

  • 摘要: 以恒源煤矿Ⅱ633工作面为工程地质背景,运用FLAC3D5.0建立三维计算模型,对软-硬-软互层特定沉积结构底板在深部开采条件下的应力、位移以及底板塑性区变化进行研究。结果表明:在工作面推进过程中,煤层底板经历了集中应力压缩-底板隆起卸压-顶板垮落再压缩的反复破坏,应力变化曲线呈类“M”形,应力集中系数最大为1.74,采空区顶板垮落后,底板应力逐渐恢复到原岩应力的0.75~0.8倍左右;位移变化曲线呈“锯齿”状分布,最大向下位移量为-6.5 cm左右,最大底鼓量为+16.4 cm,工作面推进长度越长,底鼓跨距越大;工作面底板塑性区发育深度最大为12 m,发育范围逐渐扩大,且对比经验公式计算结果可得模拟结果的正确性与可靠性。
    Abstract: Take Hengyuan Coal Mine II 633 working face as the engineering geological background, a three-dimensional calculation model was established by FLAC3D 5.0 to study the stress, displacement and the plastic zone variation of the floor under the condition of deep mining. The results show that: in the process of advancing the working face, the coal seam floor has experienced the repeated destruction of concentrated stress compression - floor uplift and pressure relief - roof caving and recompression. The stress variation curve shows an “M” shape, the maximum stress concentration coefficient is 1.74, the roof of the goaf falls behind, the stress of the floor is gradually restored to about 0.75 to 0.8 times of the original rock stress, and the displacement curve is “serrated”. The maximum downward displacement is about -6.5 cm, the maximum floor heave is +16.4 cm, the longer the length of the working face is, the greater the span of the floor heave; the maximum development depth of the plastic zone in the floor of the working face is 12 m, and the development range is gradually expanded, and the accuracy and reliability of the simulation results can be obtained by comparing the results of the empirical formula.
  • [1] 张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006,25(S1):3009.
    [2] 王连国,韩猛,王占盛,等.采场底板应力分布与破坏规律研究[J].采矿与安全工程学报,2013,30(3):317.
    [3] 鲁海峰,姚多喜,胡友彪,等.水压影响下煤层底板采动破坏深度弹性力学解[J].采矿与安全工程学报,2017,34(3):452-458.
    [4] 付宝杰,涂敏,程桦.承压水上厚煤层底板变形破坏特征实验研究[J].地下空间与工程学报,2017,13(S1):107-112.
    [5] 李可,张开智,张进红.煤层底板采动应力分布及破坏特征[J].煤矿安全,2017,48(6):192-195.
    [6] 马功社,孙四清,郑凯歌,等.采动效应下煤层底板变形破坏数值模拟[J].煤矿安全,2016,47(9):202-205.
    [7] 魏大勇.恒源煤矿Ⅱ6112工作面底板破坏深度测试与分析[J].能源技术与管理,2013,38(4):99-101.
    [8] 赵亚鹏,张培森,武守鑫.逆断层两盘开采诱发顶底板及断层应力变化规律的试验研究[J].煤矿安全,2017,48(5):53-56.
    [9] 段宏飞,姜振泉,朱术云,等.综采薄煤层采动底板变形破坏规律实测分析[J].采矿与安全工程学报,2011,28(3):407-414.
    [10] 孟祥瑞,徐铖辉,高召宁,等.采场底板应力分布及破坏机理[J].煤炭学报,2010,35(11):1832-1836.
    [11] 王宪勇.采动影响下煤层底板破坏特征试验研究[J].煤矿安全,2017,48(9):54-57.
    [12] 段宏飞.底板破坏深度六因素线性预测模型[J].岩土力学,2014,35(11):3323-3330.
    [13] 张蕊,姜振泉,李秀晗,等.大采深厚煤层底板采动破坏深度[J].煤炭学报,2013,38(1):67-72.
    [14] 柳聪亮,谭志祥,李培现,等.底板采动导水破坏带深度求取方法研究[J].煤矿开采,2010,15(5):38-41.
    [15] 关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003,28(2):121.
计量
  • 文章访问数:  127
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2019-02-19

目录

    /

    返回文章
    返回