沟谷及坡角对浅埋特厚煤层顶板导水断裂发育规律影响研究
Effects of Valley and Slope Angles on Movement Laws of Water Flowing Fracture in Roof of Shallow Buried Extra Thick Coal Seam
-
摘要: 以不连沟煤矿F6201采区为工程背景,采用沟谷坡角60°的模型试验和数值分析相结合的方法,研究沟谷坡角对浅埋特厚煤层开采顶板覆岩运移及导水裂隙发育规律的影响。结果表明:顶板覆岩运移规律受主亚关键层控制:工作面推进112.5 m时,亚关键层1发生5次周期性垮落,垮落高度15 m,与大采高经验值(16.5±2.2)m相符;工作面推进120 m时,亚关键层2发生垮落,垮落高度37.5 m。此时,主关键层与亚关键层3同步发生垮落,整体垮落高度64.5 m;沟谷两侧导水裂隙发育高度分别为63、81 m;导水裂隙发育高度随沟谷坡角的增大而增大,以沟谷坡角≤30°和≥30°为界限划分为两区域,沟谷坡角60°的导水断裂带发育高度95 m,与试验垮落总高度102 m相吻合。Abstract: Taking F6201 mining area of Buliangou Coal Mine as the engineering background, adopting the valley slope angle 60° model test and numerical analysis method to study the influence of the valley slope angle on the overlying strata movement and the development of water flowing fractured height in shallow-buried and extra-thick coal seams, the study shows that: the migration laws of roof overburden were controlled by the main sub-key strata: when the working face advanced to 112.5 m, five periodic collapses occurred in the sub-key layer 1, with a height of 15 m, which was consistent with the experience value of 16.5±2.2 m of the large mining height; when the working face advanced to 120 m, the sub-critical layer 2 collapsed, with a height of 37.5 m; at this time, the main key stratum and the sub-key stratum 3 collapsed synchronously, and the overall collapse height was 64.5 m; the water-spraying fractures developed on both sides of the valley, with height of 63 m and 81 m; the development height of water flowing fractured height increases with the increase of the slope angle of the valley, and was divided into two regions by the slope angles ≤30°and ≥30°; the development height of the water flowing fractured with a slope angle of 60° in the valley was 95 m, which was in agreement with the total height of 102 m.
-
-
[1] 钱鸣高.煤炭的科学开采[J].煤炭学报,2010(4):529. [2] 范立民.论保水采煤问题[J].煤田地质与勘探,2005, 33(5):50-53. [3] 张东升,李文平,来兴平,等.我国西北煤炭开采中的水资源保护基础理论研究进展[J].煤炭学报,2017, 42(1):36-43. [4] 钱鸣高.绿色开采的概念与技术体系[J].煤炭科技,2003(4):1-3. [5] 许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(2):179-185. [6] 张志强,许家林,王晓振,等.沟谷地形下浅埋煤层工作面矿压规律研究[J].中国煤炭,2011,37(6):55. [7] 张志强,许家林,朱卫兵,等.沟谷坡角对浅埋煤层开采矿压的影响规律研究[J].采矿与安全工程学报,2011,28(4):560-565. [8] 张杰,杨涛,王斌,等.浅埋煤层沟谷径流下开采顶板突水预测分析[J].采矿与安全工程学报,2017,34(5):868-875. [9] 赵杰,刘长友,李建伟.沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J].煤炭科学技术,2017,45(1):34-40. [10] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230. [11] 许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467. [12] 煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981:165-185. [13] 曹世魁.大采高采场关键层破裂对垮落高度的影响[J].山西煤炭,2014,34(7):10-12.
计量
- 文章访问数: 226
- HTML全文浏览量: 0
- PDF下载量: 0