燃烧温度对两淮烟煤中汞含量与赋存形态的影响
Influence of Combustion Temperature on Mercury Content and Occurrence Form of Bituminous Coal in Huainan and Huaibei Regions
-
摘要: 为了调查两淮烟煤中汞元素在不同燃烧温度下的地球化学行为,在两淮地区4个典型煤矿床分别采集了4个烟煤样品。采用程序升温石英管式炉获得400、500、600、700、800 ℃和900 ℃下的煤灰样品。利用ICP-MS测定了原煤及煤灰样品中Hg元素的含量,结合X射线衍射(XRD)和傅里叶转换红外光谱(FTIR)分析,取得如下成果:烟煤中Hg的丰度值约为0.1 μg/g;烟煤中Hg主要以残渣态形式为主,其次为可交换态和碳酸盐结合态;烟煤中Hg主要挥发温度位于400~500 ℃间,仅有少量的Hg会赋存在灰渣之中; XRD实验表明,烟煤中黏土矿物含量变化与汞的变化关系密切;此外,残渣中固定碳的存在影响着其Hg含量变化; FTIR实验表明,烟煤中Hg含量与C=O官能团含量呈较好的正相关关系,表明煤中C=O含量可以用作检测煤中Hg含量的指示剂。Abstract: In order to investigate the geochemical behavior of mercury in two bituminous coal at different combustion temperature, 4 samples of bituminous coal were collected from 4 typical coal mines in Huainan and Huaibei regions. The samples of coal ash at 400 ℃, 500 ℃, 600 ℃, 700 ℃, 800 ℃ and 900 ℃ were obtained by a quartz tube furnace. The content of Hg element in coal and coal ash samples were determined using ICP-MS, combined with X ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The results obtained are as follows: the abundance of Hg in bituminous coal is about 0.1 μg/g; Hg in bituminous coal is mainly in the form of residue, followed by exchangeable and carbonate binding states; volatile temperature of Hg in bituminous coal is at 400 ℃ to 500 ℃, a small amount of Hg is deposited in the slag; XRD experiments show that the variation of clay mineral content in bituminous coal is closely related to the variation of mercury; the presence of fixed carbon in the residue affects its Hg content; FTIR experiment shows that Hg content in bituminous coal has a good positive correlation with C=O functional group content, it indicates that the content of C=O in coal can be used as an indicator to detect the Hg content in coal.
-
Keywords:
- mercury /
- bituminous coal /
- combustion temperature /
- geochemistry /
- occurrence form /
- clean coal
-
-
[1] 任建莉,周劲松,骆仲泱,等.煤中汞燃烧过程析出规律试验研究[J].环境科学学报,2002,22(3):289. [2] 傅丛,连进京,姜英,等.高汞煤燃烧过程中汞的析出规律试验研究[J].洁净煤技术,2007,13(6):62-65. [3] 李婷婷.贵州典型高汞煤温和热解过程中汞的释放及形态转化规律的研究[D].武汉:华中科技大学,2011:45-50. [4] 路文芳,田宇,战景明,等.我国大气汞污染对人体健康的影响[J].环境与健康杂志,2012,29(8):761. [5] 代世峰,任德贻,李丹,等.贵州大方煤田主采煤层的矿物学异常及其对元素地球化学的影响[J].地质学报,2006,80(4):589-597. [6] 黄晓雨,郑刘根,张强伟,等.卧龙湖煤矿岩浆蚀变煤层中汞的分布与赋存特征[J].高校地质学报,2015, 21(2):280-287. [7] 姜萌萌.淮北卧龙湖岩浆侵入区煤中微量元素赋存规律与应用研究[D].合肥:中国科学技术大学,2011:56-62. [8] Finkleman R. Health Impacts of Coal Combustion[J].Center for Integrated Data Analytics Wisconsin Science Center, 2000: 1-4. [9] 任德贻,赵峰华,张军营,等.煤中有害微量元素富集的成因类型初探[J].地学前缘,1999,6(5):17-22. [10] 郑刘根,刘桂建,齐翠翠,等.中国煤中汞的环境地球化学研究[J].中国科学技术大学学报,2007,37(8):953-963. [11] 曾凡桂,谢克昌.煤结构化学的理论体系与方法论[J].煤炭学报,2004,29(4):443-447. [12] 梁虎珍,王传格,曾凡桂,等. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J].燃料化学学报,2014,42(2):129-137. [13] 刘大锰,杨起,汤达祯,等. 华北晚古生代煤中硫及微量元素分布赋存规律[J].煤炭科学技术,2000,28(9):39-42. [14] Tessier B, Reynaud J Y. Cataclysmic burial of Pennsylvanian Period coal swamps in the Illinois Basin[C]//Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 conference. John Wiley & Sons, Ltd, 2016: 102-110. [15] 丰芸,李寒旭,丁立明.利用XRD分析高温下淮南煤灰矿物质变化[J].安徽建筑大学学报,2008,16(5):53-57. [16] 刘国根,邱冠周,胡岳华.煤的红外光谱研究[J].中南大学学报(自然科学版),1999(4):371-373. [17] 邢莹莹.辽宁抚顺煤精官能团表征及热变异行为[J].光谱学与光谱分析,2017,37(6):1819-1825.
计量
- 文章访问数: 116
- HTML全文浏览量: 0
- PDF下载量: 0