基于离散元法的瓦斯抽采筛管煤粉通过性优化分析
Optimization Analysis of Coal Particles Passing Performance of Gas Extraction Screen Pipe Based on Discrete Element Method
-
摘要: 为了优化分析常规圆孔筛管和割缝筛管的煤粉通过性能,基于离散单元法,用PFC3D 软件建立了常规圆孔筛管和割缝筛管的颗粒流模型,结合煤粉的室内试验结果,利用天然休止角模拟试验进行颗粒流模拟参数的匹配,通过对煤粉颗粒穿过筛管筛眼(割缝)体积量的模拟,分析了筛眼直径、割缝宽度和割缝长度等参数对煤粉颗粒通过筛管性能的影响规律。结果表明:穿过筛管的颗粒体积随着筛眼直径、割缝宽度、割缝长度的增大而增大,且等效过流面积下颗粒通过体积量基本随筛眼直径、割缝宽度和割缝长度呈线性关系;但横向对比,同样过流面积下,割缝筛管的煤粉通过体积量远小于圆孔筛管,其中常规φ10 mm圆孔筛管的煤粉通过量可达2 mm×30 mm割缝筛管的33倍。Abstract: In order to analyze the passing performance of the conventional round-hole screen pipes and the slotted screen pipes, this paper built the particle flow model of the conventional round-hole screen pipes and the slotted screen pipes with PFC3D software on the basis of discrete element method, matched the particle flow simulation parameters by natural rest angle simulation test combined with the laboratory test results of coal particles, and analyzed the influence of parameters, including the screen mesh diameter, the width of the slotting and the length of the slotting on the ability of coal particles passing through screen pipe by simulating the coal particles volume passing through screen pipe. The results show that the volume of the coal particles passing through the screen tube increases with the increase of the diameter of the screen, the width of the slotting and the length of the slotting, and the volume of the particles under the equivalent overflow area is linearly dependent on the diameter of the screen, the width of the slotting and the length of the slotting. However, in the same overflow area, the passed particle volume of the slotted screen pipe is far smaller than the round-hole screen pipe, and the volume of the conventional round-hole screen pipe of φ10 mm can reach 33 times that of the 2 mm × 30 mm slotted screen pipe.
-
Keywords:
- discrete element method /
- screen pipe /
- particle flow /
- optimization analysis /
- gas drainage
-
-
[1] 边小雷,侯亚娟,赵梅,等.离散元法及其在颗粒粉碎领域的应用现状[J].矿山机械,2015(6):62-67. [2] P A Cundall. A computer model for simulating progressive large scale movements in blocky system[C]//Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A. A. Balkema, 1971(1): 8-12. [3] P A Cundall, O.D.L. Strack. A discrete numerical method for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65. [4] O D L Strack, P A Cundall.The distinct element method as a tool for research in granular media[R]. Minnesota: University of Minnesota, 1978. [6] Oda M, Iwashita K.Mechanics of granular materials: an introduction[M]. A.A. Balkema: Taylor & Francis, 1999:147-223. [7] 徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260. [8] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: A review of major applications and findings[J]. Chemical Engineering Science, 2008, 63(23): 5728-5770. [9] 曹文,李维朝,唐斌,等.PFC滑坡模拟二、三维建模方法研究[J].工程地质学报,2017,25(2):455-462. [10] 田瑞霞,焦红光.离散元软件PFC在矿业工程中的应用现状及分析[J].矿冶,2011,20(1):79-82. [11] P A Cundall, O D L Strack.Particle flow code in 3 dimensions[M]. Minnesota: Itasca Consulting Group, 2008: 1-17. [12] 金新.两淮矿区复杂煤矿瓦斯抽采PVC筛管完孔技术研究[D].成都:成都理工大学,2017. [13] 王力.煤矿井下瓦斯抽采孔完孔筛管研究与强度分析[J].煤矿安全,2016,47(4):43-47. [14] 苏海洋,申瑞臣,付利,等.煤层气水平井塑料割缝筛管有限元分析与参数优化[J].中国煤层气,2012,9(3)30-34. [15] 王同涛,闫相祯,杨秀娟.基于塑性铰模型的煤层气完井筛管抗挤强度分析[J].煤炭学报,2010,35(2):273. [16] 付利,申瑞臣,苏海洋,等.煤层气水平井完井用塑料筛管优化设计[J].石油机械,2012,40(8):47-51. [17] 黄中伟,李根生,王开龙,等.基于离散单元法的筛管内煤灰颗粒通过性分析[J].煤炭学报,2012,37(12):2083-2086. [18] 张金宝.基于离散元法的煤矿井下护孔筛管防堵性颗粒流分析[J].煤矿安全,2017,48(10):178-181. [19] 季宪军,欧国强,杨顺,等.基于PFC3D黏性与无黏崩滑土体运动过程对比分析[J].工程科学与技术,2013, 45(S1):67-73.
计量
- 文章访问数: 199
- HTML全文浏览量: 0
- PDF下载量: 0