• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

碎软煤层井下多点定向长钻孔水力压裂技术

李延军

李延军. 碎软煤层井下多点定向长钻孔水力压裂技术[J]. 煤矿安全, 2018, 49(6): 45-48.
引用本文: 李延军. 碎软煤层井下多点定向长钻孔水力压裂技术[J]. 煤矿安全, 2018, 49(6): 45-48.
LI Yanjun. Long Multi-point Underground Directional Drilling Hydraulic Fracturing Technology for Low-permeability Weak Coalbed[J]. Safety in Coal Mines, 2018, 49(6): 45-48.
Citation: LI Yanjun. Long Multi-point Underground Directional Drilling Hydraulic Fracturing Technology for Low-permeability Weak Coalbed[J]. Safety in Coal Mines, 2018, 49(6): 45-48.

碎软煤层井下多点定向长钻孔水力压裂技术

Long Multi-point Underground Directional Drilling Hydraulic Fracturing Technology for Low-permeability Weak Coalbed

  • 摘要: 针对低透气性碎软煤层普遍存在的瓦斯抽采效果差的技术问题,研究了多点定向长钻孔水力压裂高效瓦斯抽采技术, 探讨了碎软低透气性煤层的水力压裂增透机理;在施工多点定向长钻孔、井下水力压裂快速封孔装备的基础上,进行了煤矿井下水力压裂现场试验;分析了压裂过程中参数变化规律,提出了水力压裂影响范围、压裂效果和瓦斯抽采效果评价方法,并进行了效果考察。结果表明:该技术提高了井下水力压裂封孔效率和施工质量,改善了试验区域的煤储层参数,水分提高了4.31倍,透气性提高了4.88倍;水力压裂影响范围沿钻孔径向影响范围50~60 m;沿着钻孔轴向最大影响范围约40 m。压裂后连续抽采233 d累计抽采纯瓦斯量为25.14×104 m3,日最高抽采量3 077.41 m3/d,瓦斯含量降低了34.67%。
    Abstract: For the technical problems of poor gas extraction effect in low permeability and soft coal seam, the paper studies the high efficiency gas extraction technology by long multi-point directional drilling hydraulic fracturing, and discusses the mechanism of hydraulic fracturing and permeability improvement in low-permeability weak coal seam. On the basis of constructing the long multi-point directional drilling and the quick hole sealing equipment of underground hydraulic fracturing, the field test of hydraulic fracturing in underground coal mine is carried out. This paper analyzes the laws of parameter variation during fracturing, and proposes the influence range of hydraulic fracturing, fracturing effect and the evaluation method of gas extraction, and carries out the effect investigation. The results show that this technology improves the hole sealing efficiency and construction quality of underground hydraulic fracturing, improves the parameters of coal reservoir in the test area, the water content increased by 4.31 times, and the permeability increased by 4.88 times; the influence range of hydraulic fracturing is 50 m to 60 m along the radial of borehole; the maximum impact range along the axial direction is about 40 m. Continuously extracting 233 d after the fracturing, and the cumulative gas extraction is 25.14 × 104 m3, the daily maximum extraction amount is 3 077.41 m3/d, and the gas content decreased by 34.67%.
  • [1] 国家能源局.煤层气(煤矿瓦斯)开发利用“十三五”规划[R].北京:国家能源局,2016.
    [2] 李树刚,林海飞,赵鹏翔,等.采动裂隙椭抛带动态演化及煤与甲烷共采[J].煤炭学报,2014,39(8):1455.
    [3] 翟成,李贤忠,李全贵,等.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报,2011,36(12):1996.
    [4] 吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用[J].重庆大学学报,2010,33(7):104-106.
    [5] 姜光杰,孙明闯,付江伟,等.煤矿井下定向压裂增透消突成套技术研究及应用[J].中国煤炭,2009,35(11):10-14.
    [6] 袁亮,林柏泉,杨威,等.我国煤矿水力化技术瓦斯治理研究进展及发展方法[J].煤炭科学技术,2015,43(1):45-49.
    [7] 刘晓,张双斌,郭红玉,等.煤矿井下长钻孔水力压裂技术研究[J].煤炭科学技术,2014,42(3):42-44.
    [8] 陈泽升.河南中马村矿辅助层开采煤层气研究与实践[D].大庆:东北石油大学,2015.
    [9] SA Holditch, JW Ely, ME Semmelbeck, et al. Enhanced recovery of coalbed methane through hydraulic fracturing[J].World Oil, 1990, 211(5): 41-45.
    [10] 张飞,任春雨,张培,等.分段水压增透技术的分析与模拟[J].煤炭技术,2016,35(3):129-131.
    [11] 马耕,苏现波,蔺海晓,等.围岩-煤储层缝网改造增透抽采瓦斯理论与技术[J].天然气工业,2014,34(8):53-60.
    [12] 冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012,31(6):1148.
    [13] 杨宏伟.低透气性煤层井下分段点式水力压裂增透[J].北京科技大学学报, 2012,34(11):1236-1239.
    [14] 王赶耀,丰庆泰,李平,等.沿煤层顶板水平井分段压裂煤层气开采技术研究[J].山西大同大学学报(自然科学版),2013(4):68-70.
    [15] 刘丽萍.定向水力致裂坚硬顶板的数值模拟及现场实践[J].煤矿开采,2014(3):115-117.
计量
  • 文章访问数:  237
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2018-06-19

目录

    /

    返回文章
    返回