煤中不同显微组分孔隙结构特征研究
Study on Pore Sturcture Characteristics of Different Macerals in Coal
-
摘要: 为了探讨低阶煤中不同显微组分的孔隙结构特征,选用新疆阜康矿区42号煤层和鄂东斜沟矿8+9号煤层的煤样,通过浮选法进行了2种原煤显微组分的分离,采用低温液氮吸附实验分别对2种原煤及各显微组分富集物进行了比表面积、孔体积、孔径等参数测试,对其等温吸附/脱附回线进行了分析。结果表明:原煤和壳质组符合II类吸附等温线,镜质组和惰质组符合III类等温线。与镜质组和惰质组相比,壳质组具有较高的小孔含量,并且孔体积和比表面积都较大,直径大于5.4 nm的孔中两端开放透气性孔较多,镜质组和惰质组仅含有极少量的两端开放透气性孔;壳质组比表面积和孔体积分形维数最小,镜质组最大。Abstract: In order to study the pore structure characteristics of different macerals in low-rank coal, a floatation experiment was conducted to separate different macerals from raw coal samples which were selected from No.42 coal seam of Xinjiang Fukang Coal Mine and No.8+9 coal seam of Xiegou Coal Mine in the east area of Hubei Province, then the specific surface, pore volume, pore size and other parameters for two kinds of raw coal and different macerals were tested by low termperature liguid nitrogen adsorption experiment, and their adsorption and desorption loops were analyzed. The pore size distribution and pore type characteristics of different macerals were obtained by isothermal adsorption line and desorption loop analysis. The results show that: the coal and chitin group accords with the II type adsorption isotherm, the vitrinite and the inertinite are in accord with the III type isotherm; the chitin has larger small pores content and pore volume and specific surface area than that of the vitrinite and the inertinite. In the chitin group, the open pores have a larger percent in the pores in which the diameters are greater than 5.4 nm, and the vitrinite group and inertinite group contain only a very small percent of open air holes. The specific surface area and pore volume fractal dimension of chitin group were the smallest, and the vitrinite group was the largest.
-
Keywords:
- maceral /
- low temperature liquid nitrogen /
- pore structure /
- pore type /
- specific surface area
-
-
[1] 段旭琴,曲剑午,王祖讷,等.低变质烟煤有机显微煤岩组分的孔结构分析[J].中国矿业大学学报,2009,38(2):224-228. [2] 薛光武,刘鸿福,要惠芳,等.韩城地区构造煤类型与孔隙特征[J].煤炭学报,2011,36(11):1845-1851. [3] 陈向军,刘军,王林,等.不同变质程度煤的孔径分布及其对吸附常数的影响[J].煤炭学报,2013,38(2):294-300. [4] 喻廷旭,汤达祯,许浩,等.柳林矿区不同煤岩类型煤的孔隙特征[J].煤炭科学技术,2013(S2):362-366. [5] 李文华,陈亚飞,陈文敏,等.中国主要矿区煤的显微组分分布特征[J].煤炭科学技术,2000,28(9):31. [6] 宋金星,郭红玉,陈山来,等.煤中显微组分对生物甲烷代谢的控制效应[J].天然气工业,2016,36(5):25. [7] 严继民,张启元.吸附与凝聚固体的表面与孔[M].北京:科学出版社,1979. [8] 陈洪博,李文华,姜英,等.神东煤显微组分与基本结构特征研究[J].煤炭转化,2006,29(1):6-9. [9] Machnikowska H, Krztoń A, Machnikowski J. he characterization of coal macerals by diffuse reflectance infrared spectroscopy[J].Fuel, 2002, 81(2):245-252. [10] 范彦明.煤的显微组分富集物吸附甲烷微量放热特性的实验研究[D].徐州:中国矿业大学,2014. [11] 姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168. [12] 童宏树,胡宝林.鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J].煤炭技术,2004,23(7):1-3.
计量
- 文章访问数: 235
- HTML全文浏览量: 0
- PDF下载量: 3