基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测

    Prediction for Coal Mine Gas Emission Based on LVQ-GA-BP Neural Network

    • 摘要: 针对煤矿瓦斯涌出量影响因素多、非线性、复杂性等特点,提出了学习向量量化神经网络(LVQ)与GA-BP神经网络相结合的方法。通过LVQ对诸多影响因素进行分类并选出主要影响因素,再用遗传算法(GA)优化BP神经网络的权值和阈值,构建煤矿瓦斯涌出量预测模型,并通过相关数据将建立的LVQ-GA-BP预测模型与BP神经网络进行了对比分析,结果表明通过这种方法平均相对误差为0.025 51,低于BP神经网络训练的平均绝对误差,网络收敛速度也显著提高了。

       

      Abstract: We combine the learning vector quantization (LVQ) and GA-BP neural network to predict gas emission in the view of the characteristics of varied, nonlinear and complex gas emission in coal mine.The algorithm classified and selected the main influence factors, and used genetic algorithm to optimize the weight and threshold of BP neural network to construct the prediction model of mine gas emission quantity. LVQ-GA-BP prediction model established by related data is compared and analyzed with BP neural network, the result shows that the average relative error of this method is 0.025 51 and is lower than that of the BP neural network, and the method improves the prediction accuracy.

       

    /

    返回文章
    返回