无人机热红外遥感煤火探测方法
Approach of Detecting Coal Fires by Unmanned Aerial Vehicle Thermal Infrared Remote Sensing Technology
-
摘要: 为了提高矿区煤火识别的精度,利用无人机搭载数码相机和热红外相机分别在白天和夜晚采集RGB图像和热红外图像,基于面向对象的分类方法将矿区彩色正射影像分类并赋予对应类别的发射率值;热红外影像经过辐射定标后镶嵌为正射影像,根据辐射传导方程和Plank反函数反演矿区地表温度,采用移动窗口热异常提取算法识别煤火区。试验表明,实测煤火点与无人机热红外技术探测的煤火区的重叠率为96.72%,说明无人机热红外遥感煤火探测方法的精度可靠,技术可行。Abstract: To improve the accuracy of coal fire detection in a mine, RGB and thermal infrared images were respectively collected at daytime and night time using UAV equipped with color and thermal infrared camera. Based on object oriented classification method, color orthophoto images were classified in mining area and the emission rate of corresponding categories were given. The thermal infrared image is inlaid as a positive projective image after radiation calibration, the land surface temperature is inversed according to the radiation conduction equation and the Plank function, and the thermal anomaly extraction algorithm is used to identify the coal fire zone. The test shows that the overlap ratio of the coal fire spot and the thermal infrared detection by unmanned aerial vehicle is 96.72%, which indicates that the accuracy of thermal infrared remote sensing coal fire detection method by unmanned aerial vehicle is reliable and the technology is feasible.
-
-
[1] Song Z, Kuenzer C. Coal fires in China over the last decade: A comprehensive review [J]. International Journal of Coal Geology, 2014, 133: 72-99. [2] 李峰,梁汉东,赵小平,等.基于ASTER影像的乌达火区遥感监测研究[J].煤矿安全,2016,47(11):15-18. [3] Jiang W, Jia K, Chen Z, et al. Using spatiotemporal remote sensing data to assess the status and effectiveness of the underground coal fire suppression efforts during 2000-2015 in Wuda, China [J]. Journal of Cleaner Production, 2017, 142: 565-577. [4] Huo H, Ni Z, Gao C, et al. A study of coal fire propagation with remotely sensed thermal infrared data [J]. Remote Sensing, 2015, 7(3): 3088-3113. [5] Zhang X, Zhang J, Kuenzer C, et al. Capability evaluation of 3-5 μm and 8-12.5 μm airborne thermal data for underground coal fire detection [J]. International Journal of Remote Sensing, 2004, 25(12): 2245-2258. [6] Wang Y J,Tian F,Huang Y,et al. Monitoring coal fires in Datong coalfield using multi-source remote sensing data [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3421-3428. [7] Turner D, Lucieer A, Malenovsky Z, et al. Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds [J]. Remote Sensing, 2014(6): 4003. [8] Harvey M C, Rowland J V, Luketina K M. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand [J]. Journal of Volcanology & Geothermal Research, 2016, 325: 61-69. [9] Santesteban L G, Gennaro S F D, Herrero-Langreo A, et al. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard [J]. Agricultural Water Management, 2016, 183: 49-59. [10] 易凤佳,李仁东,常变蓉,等.面向对象的丘陵区水田遥感识别方法[J].农业工程学报,2015,31(11):186-193. [11] Kuenzer C, Zhang J, Li J, et al. Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction [J]. International Journal of Remote Sensing, 2007,28(20): 4561-4585. -
期刊类型引用(9)
1. 李延河,倪小明,王保玉,谭学斌. 基于上覆岩层应力场和裂缝场演化的采动井套管破断特征及防控对策. 煤炭科学技术. 2024(01): 221-231 . 百度学术
2. 霍超,王峰,牛宏伟,方惠明,吕毅,潘海洋,张志军,赵明,苗健. 新时期煤炭绿色开采覆岩离层注浆充填技术研究及应用. 煤炭工程. 2024(11): 1-6 . 百度学术
3. 马荷雯. 我国煤矿(区)离层水害特征分析. 煤矿安全. 2023(05): 106-112 . 本站查看
4. 易四海,王赟,尹尚先,高鹏程,仲锐. 矿井离层水害类型及突水可能性判别. 中国矿业. 2023(S1): 447-450+454 . 百度学术
5. 张志军. 覆岩离层时空演化规律及注浆开采实践——以夏店煤矿3117工作面为例. 中国煤炭地质. 2023(07): 33-40 . 百度学术
6. 姚文涛,李伟,岳鹏. 煤矿覆岩离层注浆关键层位置识别与定位研究. 内蒙古煤炭经济. 2022(03): 58-60 . 百度学术
7. 王瑞,夏向学,闫国成,杨博,徐斌,唐忠义,黄文先. 巨厚砂岩含水层下煤层群开采顶板突水机理研究. 华北科技学院学报. 2022(05): 14-19 . 百度学术
8. 揭志文. 急倾斜近间距厚煤层采煤方法研究及工程应用. 采矿技术. 2021(S1): 1-4 . 百度学术
9. 陈正华,徐洪,曾亮,杨富军. 倾斜煤层采动条件下覆岩移动规律研究. 地下水. 2021(06): 197-199+272 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 314
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 17