煤体低温氧化过程中CH4吸附解吸演化规律研究
Study on Adsorption and Desorption Evolution Law of CH4 in Low Temperature Oxidation Process of Coal
-
摘要: 以安徽淮北杨柳煤矿所产烟煤为实验样品,通过高压气体解吸吸附仪与煤岩体工业成分分析仪联用,探究煤体低温氧化过程中煤岩体组分的动态演变规律和煤体对甲烷解析吸附特征的演化规律。实验表明:随着煤体氧化温度的增加,内部灰分和固定碳含量基本保持不变,而水分和挥发分含量持续降低,但水分含量的减少主要集中在30~130 ℃,而挥发分含量的减少主要集中在130~230 ℃;不同氧化温度下煤体对甲烷吸附量也不同,吸附能力与氧化温度大体呈现出负相关的关系,即随着氧化温度的增加,煤体对甲烷的吸附能力逐步降低;不同氧化温度下煤体对甲烷解吸后的甲烷残存量也不同,煤体中甲烷残存量氧化温度的增长呈现出先减小后逐步增加的趋势,在氧化温度为80 ℃附近出现甲烷残存量最小值。Abstract: In this paper, the bituminous coal produced in Yangliu Coal Mine in Huaibei, Anhui Province is used as experimental sample. The dynamic evolution law of coal and rock component in coal and the evolution of methane adsorption and desorption characteristics are studied by high pressure gas desorption adsorber and coal and rock industrial composition analyzer. The results show that with the increase of the oxidation temperature of coal, the contents of internal ash and fixed carbon basically stay the same, while the content of water and volatile content decreases continuously, but the decrease of water content is mainly concentrated at 30 ℃ to 130 ℃. The adsorption capacity of the coal is different from that of the oxidation temperature, and the adsorption of methane is also different under different oxidation temperature. The adsorption capacity and the oxidation temperature generally show negative correlation. That is with the increase of oxidation temperature, the adsorption capacity of coal is gradually reduced. The residual amount of methane after coal body desoption was also different under different oxidation temperature. The increase of the oxidation temperature of the residual methane in coal body shows the trend of first decreasing and then increasing gradually. When the oxidation temperature is near 80 ℃, the residual content of methane is minimum.
-
Keywords:
- low temperature oxidation /
- methane /
- adsorption /
- desorption /
- evolution law
-
-
[1] 陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944. [2] 李旭东,蒋曙光,刘松,等.煤自燃反应微观机理过程论[J].煤矿安全,2011,42(2):117-121. [3] 李子文,郝志勇,庞源,等.煤的分形维数及其对瓦斯吸附的影响[J].煤炭学报,2015,40(4):863-869. [4] 桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(Ⅰ)-煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15. [5] 李子文,林柏泉,郝志勇,等.煤体孔径分布特征及其对瓦斯吸附的影响[J].中国矿业大学学报,2013,42(6):1047-1053. [6] 秦波涛,张雷林,王德明,等.采空区煤自燃引爆瓦斯的机理及控制技术[J].煤炭学报,2009,34(12):1655-1659. [7] 陆伟,王德明,仲晓星,等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):201. [8] 仲晓星,王德明,尹晓丹.基于程序升温的煤自燃临界温度测试方法[J].煤炭学报,2010(S1):128-131. [9] 文虎,代爱萍.煤自燃的分子结构模型探讨[J].煤炭转化,2004,27(2):13-18. [10] 秦波涛,鲁义,殷少举,等.近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J].采矿与安全工程学报,2013,30(2):311-316. [11] 文虎,徐精彩,李莉,等.煤自燃的热量积聚过程及影响因素分析[J].煤炭学报,2003,28(4):370-374. [12] 周福宝.瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J].煤炭学报,2012,37(5):843-849. [13] 邵昊,蒋曙光,吴征艳,等.二氧化碳和氮气对煤自燃性能影响的对比试验研究[J].煤炭学报,2014,39(11):2244-2249.
计量
- 文章访问数: 147
- HTML全文浏览量: 3
- PDF下载量: 0