• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

融合多源求参结果的开采沉陷稳健预计方法

王磊, 魏涛, 池深深, 陈元非

王磊, 魏涛, 池深深, 陈元非. 融合多源求参结果的开采沉陷稳健预计方法[J]. 煤矿安全, 2017, 48(11): 222-225.
引用本文: 王磊, 魏涛, 池深深, 陈元非. 融合多源求参结果的开采沉陷稳健预计方法[J]. 煤矿安全, 2017, 48(11): 222-225.
WANG Lei, WEI Tao, CHI Shenshen, CHEN Yuanfei. Steady Mining Subsidence Prediction Method by Fusing Multi-source Parameters Identification Results[J]. Safety in Coal Mines, 2017, 48(11): 222-225.
Citation: WANG Lei, WEI Tao, CHI Shenshen, CHEN Yuanfei. Steady Mining Subsidence Prediction Method by Fusing Multi-source Parameters Identification Results[J]. Safety in Coal Mines, 2017, 48(11): 222-225.

融合多源求参结果的开采沉陷稳健预计方法

Steady Mining Subsidence Prediction Method by Fusing Multi-source Parameters Identification Results

  • 摘要: 为了克服单一求参模型由于求参结果不可靠、不精准造成的开采沉陷预计结果不稳健问题,重点研究了融合多源求参模型参数的开采沉陷稳健预计方法,并基于最小二乘原理推导了通用模型,构建了基于融合模矢法、遗传算法和模拟退火求参结果的开采沉陷预计新模型,并对模型的可行性进行了模拟实验验证。实验结果表明:新模型下沉预计误差及水平移动预计误差明显优于基于单一模矢法、遗传算法、模拟退火法反演的参数的下沉预计误差;融合多源求参模型参数的开采沉陷稳健预计方法具有一定抗差能力。
    Abstract: In order to overcome the problem of unreliability and inaccuracy results of the single parameter identification model leading to the unsteady of mining subsidence prediction results, steady mining subsidence prediction method by fusing multi-source parameter identification model is studied in this paper, a new model for mining subsidence prediction is established by integrating the parameters identification results of model vector method, genetic algorithm and simulated annealing based on the least square principle, and the feasibility of the model is simulated. The experimental results show that the subsidence error and horizontal displacement error of the new prediction model is better than the estimated error of parameters inversion based on single mode vector method, genetic algorithm, simulated annealing method; new prediction method by fusing multi-source mining subsidence prediction parameters identification model has a certain anti-error ability.
  • [1] 何国清,杨伦,凌赓娣.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [2] 李春意,崔希民,何荣,等.开采沉陷预计中三维空间曲面拟合参数的研究[J].采矿与安全工程学报,2011,28(3):420-424.
    [3] 吴侃,葛家新,王铃丁,等.开采沉陷预计一体化方法[M].徐州:中国矿业大学出版社,1991.
    [4] 查剑锋,冯文凯,朱晓峻.基于遗传算法的概率积分法预计参数反演[J].采矿与安全工程学报,2011,28(4):32-36.
    [5] 王磊,郭广礼,王明柱,等.山区地表移动预计修正模型及其参数求取方法[J].煤炭学报,2014,39(6):1070-1076.
    [6] 苏军明,朱建军,伍雅晴,等.模拟退火算法在概率积分法参数反演中的应用[J].工程勘察,2015(12):76.
    [7] 李培现,谭志祥,闫丽丽,等.基于支持向量机的概率积分法参数计算方法[J].煤炭学报,2010,35(8):1247-1251.
    [8] 李培现,谭志祥,闫丽丽,等.基于支持向量机的概率积分法参数动态时序预报[J].煤炭学报,2011,36(2):380-385.
    [9] LI Peixian, TAN Zhixiang, YAN Lili, et al. A method to calculate displacement factors using SVM[J]. Mining Science and Technology, 2011, 21(3): 307-311.
    [10] 郭文兵,吴财芳,邓喀中.开采影响下建筑物损害程度的人工神经网络预测模型[J].岩石力学与工程学报,2004,23(4):583-587.
    [11] 王正帅,邓喀中.概率积分法参数辨识的多尺度核偏最小二乘回归方法[J].岩石力学与工程学报,2011,30(S2):3863-3870.
计量
  • 文章访问数:  149
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2017-11-19

目录

    /

    返回文章
    返回