基于ANN的泡沫金属阻隔爆效果预测研究

    Prediction Research on Suppression and Isolation Effect for Foam Metal Based on ANN

    • 摘要: 泡沫金属是目前能够同时抑制瓦斯爆炸火焰波和压力波的新型阻隔爆材料,影响其阻隔爆效果的因素众多,而测试实验过程费用高,周期长。为减少实验周期的材料损耗,优化泡沫金属参数组合,提高实验效率,采用人工神经网络方法对不同参数组合的泡沫金属阻隔效果进行了预测研究。结果表明:BP神经网络适用泡沫金属阻隔爆效果预测。当BP网络采用10个神经元,传递函数选择“logsig”、“purelin” ,网络达到最优,预测压力和温度的最大衰减率平均误差分别为13%和4%。研究表明人工神经网络可以用于泡沫金属阻隔爆效果的预测。

       

      Abstract: Foam metal is a kind of new material that can inhibit gas explosion flame and pressure wave, and there are many factors that affect the effect of suppression and isolation, and the testing process is expensive and the period is long. We use artificial neural network (ANN) method to predict suppression and isolation effect of foam metal to reduce the material loss in experimental period, optimize parameters combination and improve the efficiency of the experiment. The results show that the BP neural network can be used for explosion suppression and isolation effect prediction of foam metal. The optimal network can predict the biggest attenuation of pressure and temperature, and the average error can reach 13% and 4% respectively when BP network has 10 neurons and its transfer function uses “logsig”, “purelin”. The research results show that artificial neural network can be used for suppression and isolation effect prediction of foam metal.

       

    /

    返回文章
    返回