基于HHT-CS-ELM的瓦斯涌出量时序预测
Prediction of Time Series for Gas Emission Quantity Based on HHT-CS-ELM Characteristics
-
摘要: 为有效挖掘瓦斯涌出量监测数据隐含特征,预防瓦斯动力灾害,基于希尔伯特-黄变换(HHT)方法、布谷鸟搜索算法(CS)和极限学习机(ELM)基本理论,构建了瓦斯涌出量的HHT-CS-ELM动态预测模型。通过EMD将样本序列分解成多个不同频率的本征模态函数(IMF)分量;利用Hilbert变换获取各分量的瞬时频率,并据此将IMF分量划分成较高频和低频,采用不同的预测模型进行预测,经叠加各预测值得到最终预测结果。以汾西矿业集团某矿瓦斯涌出量监测数据为例进行仿真实验,结果表明:HHT方法能有效降低数据复杂度,其最小相对误差为0.144%,最大相对误差为0.388%,平均相对误差为0.281%,具有较高的预测精度和泛化能力;更好地适用于非平稳时间序列预测。Abstract: To effectively excavate the implicit character of gas emission monitoring data, and to prevent the gas dynamical disaster, based on basic principle of Hilbert-Huang transform (HHT) method, the cuckoo search (CS) and extreme learning machine (ELM), the HHT-CS-ELM dynamic prediction model for gas emission quantity was built. The sample series was decomposed into multiple different frequencies intrinsic mode function (IMF) by EMD; the instantaneous frequency of each component was obtained by Hilbert transformation, then divided them into higher frequency and lower frequency; different prediction models were used to predict the IMF; the final prediction results were obtained by superimposing each forecast. This paper took the gas emission monitoring data in a coal of Fenxi Mining Industry as an example to carry out simulation experiment. The results show that: the HHT method can effectively reduce the complexity of the monitoring data, and the minimum relative error is 0.144%, the maximum relative error is 0.388%, the average relative error is 0.281%; this model has higher prediction precision and generalization ability; it can be well applied to non-stationary time series prediction.
-
-
[1] 施式亮,李润求,罗文柯.基于EMD-PSO-SVM的煤矿瓦斯涌出量预测方法及应用[J].中国安全科学学报,2014,24(7):43-49. [2] 樊保龙,白春华,李建平.基于LMD-SVM的采煤工作面瓦斯涌出量预测[J].采矿与安全工程学报,2013,30(6):946-952. [3] 付华,谢森,徐耀松,等.基于MPSO-WLS-SVM的矿井瓦斯涌出量预测模型研究[J].中国安全科学学报,2013,23(5):56-61. [4] 魏春荣,李艳霞,孙建华,等.灰色-分源预测法对煤矿瓦斯涌出量的应用研究[J].采矿与安全工程学报,2013,30(4):628-632. [5] 吕伏,梁冰,孙维吉,等.基于主成分回归分析法的回采工作面瓦斯涌出量预测[J].煤炭学报,2012,37(1):113-116. [6] 王晓路,刘健,卢建军.基于虚拟状态变量的卡尔曼滤波瓦斯涌出量预测[J].煤炭学报,2011,36(1):80. [7] 付华,姜伟,单欣欣.基于耦合算法的煤矿瓦斯涌出量预测模型研究[J].煤炭学报,2012,37(4):654-658. [8] 时培明,丁雪娟,李庚,等.一种EMD改进方法及其在旋转机械故障诊断中的应用[J].振动与冲击,2013,32(4):185-190. [9] 张淑清,翟欣沛,董璇,等.EMD及Duffing振子在小电流系统故障选线方法中的应用[J].中国电机工程学报,2013,33(10):161-167. [10] 董丁稳,李树刚,常心坦,等.基于HHT方法的矿井瓦斯体积分数预测[J].中国安全科学学报,2011,21(9):100-105. [11] 朱志洁,张宏伟.基于GA-ELM的冲击地压危险性预测研究[J].中国安全生产科学技术,2014,10(8):46. [12] 李彬,李贻斌.基于ELM学习算法的混沌时间序列预测[J].天津大学学报,2011,44(8):701-704. [13] 薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015,43(8):8-13. [14] 张永鞲,汪镭,吴启迪.动态适应布谷鸟搜索算法[J].控制与决策,2014,29(4):617-622. [15] 明波,黄强,王义民,等.基于改进布谷鸟算法的梯级水库优化调度研究[J].水利学报,2015,46(3):341.
计量
- 文章访问数: 278
- HTML全文浏览量: 0
- PDF下载量: 0