巷道围岩稳定性分类的GSM-SVM预测模型
Prediction Model for Stability Classification of Roadway Surrounding Rock Based on Grid Search Method and Support Vector Machine
-
摘要: 为准确预测巷道围岩稳定性类别,提出了基于网格搜索法(GSM)优化支持向量机(SVM)的巷道围岩稳定性预测模型。选取22组巷道围岩数据作为学习样本,以水平地应力与巷道夹角、顶板岩性、水的影响和巷道断面积4个指标作为模型输入,巷道围岩稳定程度作为模型输出,同时为增强模型的泛化性能和预测精度,采用改进的网格搜索方法优化支持向量机参数,最终构建基于GSM-SVM的巷道围岩稳定性预测模型。然后运用该模型对8组巷道围岩数据进行预测,并同BP神经网络模型的结果进行对比。结果表明,GSM-SVM模型的预测结果与实际结果吻合,正确率达98%,具有比BP神经网络模型更高的精度。Abstract: In order to predict the stability classification of roadway surrounding rock accurately and rapidly, a prediction model for stability classification of roadway surrounding rock based on support vector machine (SVM) optimized by grid search method (GSM) was proposed. Twenty-two groups of roadway surrounding rock data were chosen as learning samples, four indexes including angle between the horizontal crustal stress and roadway, roof lithologic character, water effect and basal area of roadway were chosen as model input, and roadway surrounding rock stability was chosen as model output. Meanwhile, in order to improve generalization and prediction precision of the model, the SVM parameters were optimized by improved grid search method, finally the roadway surrounding rock prediction model based on GSM-SVM was established. Then using this model to predict eight groups of roadway surrounding rock data, the prediction results were compared with those predicted by BP neural network model. The results show that the prediction results of GSM-SVM model accord with the actual results, and the correct rate reaches to 98%, so GSM-SVM model has higher accuracy than BP neural network model.
-
-
[1] 邓声君,陆晓敏,黄晓阳.地下洞室围岩稳定性分析方法简述[J].地质与勘探,2013,49(3):541-547. [2] 朱一丁,马文涛.回采巷道围岩分类的支持向量机方法[J].采矿与安全工程学报,2006,23(3):362-365. [3] 赵洪波.围岩破坏模式识别的支持向量机研究[J].岩土力学,2005,26(2):235-238. [4] 蒋金泉,冯增强,韩继胜.跨采巷道围岩结构稳定性分类与支护参数决策[J].岩石力学与工程学报,1999,18(1):81-85. [5] 宁云才,邢中光.煤矿矿区回采巷道围岩稳定性分类的灰色Fuzy聚类分析及应用[J].系统工程理论与实践,1997,17(8):115-124. [6] 张士科,黄增慧,孙海建,等.基于遗传算法和人工神经网络的巷道支护研究[J].煤炭与化工,2016,39(1):1-4. [7] 郑美田,陈乐求,王曰国.洞室围岩质量多因素模糊综合评价模型及应用[J].地质与勘探,2007,43(5):101. [8] 张国云.支持向量机算法及其应用研究[D].长沙:湖南大学,2006:1-33. [9] Vapnik V N. The nature of statistical learning theory [M]. New York:Springer-Verlag, 1995: 23-105. [10] Steve R Gunn. Support Vector Machines for classification and regression [R].University of Southampton,1998: 23-65. [11] 郭超,宋卫华,魏威.基于网格搜索-支持向量机的采场顶板稳定性预测[J].中国安全科学学报,2014,24(8):31-36. [12] 王威,苏经宇,韩阳,等.支持向量机在城市震后火灾损失预测中的应用[J].灾害学,2008,23(1):6-9. [13] 刘俊娥,杨晓帆,郭章林.基于FIG-SVM的煤矿瓦斯浓度预测[J].中国安全科学学报,2013,23(2):80. [14] 郭瑞,徐广璐.基于信息融合与GA-SVM的煤矿瓦斯浓度多传感器预测模型研究[J].中国安全科学学报,2013,23(9):33-38. [15] 牛文林,李天斌,熊国斌,等.基于支持向量机的围岩定性智能分级研究[J].工程地质学报,2011,19(1):88-92. [16] 邱道宏,李术才,张乐文,等.基于TSP203系统和GA-SVM的围岩超前分类预测[J].岩石力学与工程学报,2010,29(S1):3221-3226. [17] 刘会林,朱明,张爱霞.应用神经网络方法评定巷道围岩稳定性[J].矿业安全与环保,2006,33(4):37.
计量
- 文章访问数: 255
- HTML全文浏览量: 0
- PDF下载量: 0