优化神经网络模型在瓦斯涌出预测中的应用

    Application of Neural Network Model Optimization in Predicting Gas Emission

    • 摘要: 为准确预测矿井瓦斯涌出量,降低瓦斯涌出带来的危害,通过灰色关联分析理论得出影响瓦斯涌出量的主要因素为原始瓦斯含量>煤层厚度>煤层埋深>工作面长度>推进速度>煤层倾角,通过优化RBF模型对瓦斯涌出量预测模型进行构建,并运用Matlab仿真模拟预测矿井瓦斯涌出量,结果显示:基于优化RBF模型仿真模拟预测得出的矿井瓦斯涌出量与实际瓦斯涌出量非常接近,5组预测数据中,最大误差为3.6%,最小误差为0.8%,平均误差为1.84%,预测精度较高,可应用于矿井瓦斯涌出量的预测当中。

       

      Abstract: In order to accurately predict the amount of mine gas emission, reduce the harm caused by gas emission, through gray correlation analysis theory, we indicate that the main factors affecting gas emission is original gas content > thickness of coal seam > depth of coal seam > length of working surface > advancing speed > inclination of coal seam. The prediction model of gas emission is constructed by RBF model optimization, and we use Matlab simulation to predict the mine gas emission. The results show that simulation prediction result based on the RBF model optimization is very close to actual gas emission, in 5 sets of forecast data, the maximum error is 3.6%, the minimum error is 0.8%, the average error is 1.84%. The prediction accuracy is higher and can be applied to the prediction of mine gas emission.

       

    /

    返回文章
    返回