煤层底板突水危险性的Bayes判别分析模型及应用
Bayes Discriminant Analysis Model for Water Inrush Risk from Coal Seam Floor and its Application
-
摘要: 基于Bayes判别分析的基本思想,建立煤层底板突水危险性的Bayes判别分析模型。选用煤层的含水层富水性、含水层水压、隔水层厚度、断层导水性和构造发育程度5个指标作为该模型的判别因子,以不同地区煤矿的14组煤层实测数据作为训练样本,建立了Bayes判别分析模型。为了验证模型的准确性,用回代判别方法对14组煤层实测数据进行判别,并用工程实例进行了验证。研究结果表明,Bayes判别分析模型误判率较低,能快速有效地判别出煤层底板突水危险性的等级,在实际工程中有较强的适用性。Abstract: Based on the basic idea of Bayes discriminant analysis method, we established Bayes discriminant analysis model for evaluating water inrush risk from coal seam floor. Five indicators such as aquifer property, water head, water-resisting layer thickness, fault permeability and fractures development level were used as discriminant factors in the model. Fourteen groups of measured data on coal seam from diffenent coal mines were regarded as training samples, then the Bayes discriminant model was set up. Fourteen groups of experimental data of coal seam were discriminated by back substitution discriminant method and then the model was used in practical engineering. The results show that misjudgment rate of the Bayes discriminant analysis model is low and it can effectively distinguish the coal floor water inrush risk level. So the model can be better applied to practical engineering.
-
Keywords:
- coal seam /
- floor /
- water inrush /
- Bayes method /
- discriminant analysis
-
-
[1] 张文泉,张广鹏,李伟,等.煤层底板突水危险性的Fisher判别分析模型[J].煤炭学报,2013,38(10):1831-1836. [2] 孙明,郑文翔,李绪萍,等.基于层次分析的深部煤层开采底板突水影响因素分析[J].煤矿安全,2013,44(3):183-186. [3] 王连国,宋扬.煤层底板突水组合人工神经网络预测[J].岩土工程学报,2001,23(4):502-505. [4] 靳德武,陈健鹏,王延福,等.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214-217. [5] 曹庆奎,赵斐.基于模糊-支持向量机的煤层底板突水危险性评价[J].煤炭学报,2011,36(4):633-637. [6] 姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):71-75. [7] 武强,张志龙,张生元,等.煤层底板突水评价的新型实用方法Ⅱ—脆弱性指数法[J].煤炭学报,2007,32(11):1121-1126. [8] 李建林,张洪云,王心义,等.脆弱性指数法在煤层底板突水预测中的应用与建议[J].煤炭学报,2014,39(4):725-730. [9] 高延法,章延平,张慧敏,等.底板突水危险性评价专家系统及应用研究[J].岩石力学与工程学报,2009,28(2):253-258. [10] 张和生,薛光武,石秀伟,等.基于地学信息复合叠置分析对煤层底板突水的预测[J].煤炭学报,2009,34(8):1100-1104. [11] 肖建于,童敏明,姜春露.基于模糊证据理论的煤层底板突水量预测[J].煤炭学报,2012,37(S1):131. [12] 吴超,王婷.安全统计学[M].北京:机械工业出版社,2014. [13] 张忠占,徐兴忠.应用数理统计[M].北京:机械工业出版社,2008. [14] 周健,史秀志,王怀勇.矿井突水水源识别的距离判别分析模型[J].煤炭学报,2010,35(2):278-282. [15] 陈红江,李夕兵,刘爱华,等.煤层底板突水量的距离判别分析预测方法[J].煤炭学报,2009,34(4):487. [16] 李春萍,郝会兵.煤巷围岩分类的Bayes判别分析法[J].煤炭学报,2011,36(S2):304-307. [17] 张金才,刘天泉.煤层底板突水影响因素的分析与研究[J].煤矿开采,1993,13(4):35-39. [18] 李新凤,魏久传,隋岩刚.煤层顶板砂岩含水层富水性单因素分析[J].山东煤炭科技,2012(5):128. [19] 刘伟韬,李加祥,张文泉.顶板涌水等级评价的模糊数学方法[J].煤炭学报,2001,26(4):399-403. [20] 张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].青岛:山东科技大学,2004.
计量
- 文章访问数: 402
- HTML全文浏览量: 0
- PDF下载量: 0