基于两级数据融合技术的煤矿粉尘监测研究
Research on Coal Mine Dust Monitoring Based on Two-stage Data Fusion Technology
-
摘要: 为解决煤矿粉尘监测中传感器测量指标种类单一、测量数据量大等问题,提出了以粉尘浓度和粉尘粒度为监测对象,运用数据融合技术处理传感器信息的新方法。在建立数据融合两级结构模型的基础上,先应用基于矩阵分析的融合算法对同质源数据进行数据级融合,再应用D-S证据理论对异质源数据进行决策级融合,最终实现传感器信息的整合优化。试验和应用结果表明,该方法在完善粉尘表征评价指标的同时,显著提高了传感器信息的准确度和可信度。Abstract: In order to solve the problem of the single piece of sensors' measurement and the complex and repeated measured data in the coal mine dust monitoring, a new method that taking the dust concentration and dust particle size as the monitoring objects is proposed by using the data fusion technology to process the data of sensor. On the basis of the establishment of data fusion two-stage structure model, we first applied fusion algorithm based on matrix analysis to carry out data level information fusion of homogeneous data source, and then D-S evidence theory was applied to heterogeneous source data for decision level fusion. Finally, we realize the integration optimization of sensor information. Test and application results show that this method is perfect in dust characterization evaluation, which significantly improves the accuracy and reliability of the sensor information.
-
Keywords:
- data fusion /
- dust in coal mine /
- real-time monitoring /
- matrix analysis /
- D-S evidence theory
-
-
[1] 赵光宇.煤矿粉尘的危害及等级划分的探讨[J].山西煤炭,2008,28(4):49-50. [2] 唐娟.粉尘浓度在线监测技术的现状及发展趋势[J].矿业安全与环保,2009,36(5):69-72. [3] 王兆喜,江兆利,周长超,等.煤矿粉尘在线监测及智能喷雾降尘技术[J].煤矿安全,2008(7):35-38. [4] 王绪友,付伟.煤矿粉尘在线监测及联动喷雾降尘系统的设计[J].工矿自动化,2010(6):109-111. [5] 胡振涛,刘先省.一种实用的数据融合算法[J].自动化仪表,2005,26(8):7-9. [6] 严怀成,黄心汉,王敏.多传感器数据融合技术及其应用[J].传感器技术,2005(10):1-4. [7] 黄惠宁,刘源璋,梁昭阳.多传感器数据融合技术概述[J].科技信息,2010(15):72-73. [8] 邵良衫,付贵祥.基于数据融合理论的煤矿瓦斯动态预测技术[J].煤炭学报,2008,33(5):551-555. [9] 孙延飞,李智超,王静,等.多传感器数据融合在煤矿安全监测中的应用[J].煤矿安全,2012,43(1):102. [10] 杨启明,张力明.基于D-S证据理论的管道多传感器数据融合[J].油气储运,2014,33(3):252-254.
计量
- 文章访问数: 308
- HTML全文浏览量: 0
- PDF下载量: 0