• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

火烧煤层提高强水敏储层煤层气采收率初探

刘盈, 白兴家

刘盈, 白兴家. 火烧煤层提高强水敏储层煤层气采收率初探[J]. 煤矿安全, 2016, 47(10): 180-183.
引用本文: 刘盈, 白兴家. 火烧煤层提高强水敏储层煤层气采收率初探[J]. 煤矿安全, 2016, 47(10): 180-183.
LIU Ying, BAI Xingjia. Exploration on Enhancing Extraction of CBM in Water-sensitive Reservoir by Combustion of Coal Seams[J]. Safety in Coal Mines, 2016, 47(10): 180-183.
Citation: LIU Ying, BAI Xingjia. Exploration on Enhancing Extraction of CBM in Water-sensitive Reservoir by Combustion of Coal Seams[J]. Safety in Coal Mines, 2016, 47(10): 180-183.

火烧煤层提高强水敏储层煤层气采收率初探

Exploration on Enhancing Extraction of CBM in Water-sensitive Reservoir by Combustion of Coal Seams

  • 摘要: 常规开采煤层气的方法是排水降压开采,即通过排采地层水降低压力促使煤层气解吸。而针对水敏性储层,在常规开采方式采出效率较低的情况下,提出采用火烧煤层的方式进行煤层气增产,并分别从温度、压力、表面积、竞争吸附等方面阐述其在理论上的可行性,温度提高分子活性,压力提供扩散动力,表面积提供扩散路径,竞争吸附促进解吸等,并通过强水敏储层实例验证,在储层经过火烧煤层改造后,煤层气的采收率有了较大的提高。
    Abstract: The conventional way to exploit coalbed methane is pressure lowering through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. While, for water-sensitive reservoir, the recovery by conventional way is low; in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: improving activity of molecules by temperature, diffusion by pressure, migration path by superficial area, promoting adsorption and desorption by competition; then given an example of water-sensitive reservoir, the obtained results show that the recovery is effectively improved through combustion of coal seam.
  • [1] 赵庆波,张建博.中国煤层气研究与勘探进展(一)[M].徐州:中国矿业大学出版社,2001:5-9.
    [2] 倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2010.
    [3] 秦勇,傅雪海,韦重韬,等.煤层气成藏动力条件及其控藏效应[M].北京:科学出版社,2012.
    [4] 张小东,刘炎昊,桑树勋,等.高煤级煤储层条件下的气体扩散机制[J].中国矿业大学学报,2011,40(1):43-48.
    [5] 刘爱华,付雪梅,梁文庆,等.不同煤阶煤孔隙分布特征及其对煤层气开发的影响[J].煤炭科学技术,2013,41(4):104-108.
    [6] 宋晓夏,唐跃刚,李伟,等.基于显微CT的煤渗流孔精细表征[J].煤炭学报,2013,38(3):435-440.
    [7] 吴财芳,秦勇.煤储层弹性能及其控藏效应:以沁水盆地为例[J].地学前缘,2012,19(2):248-256.
    [8] 杨兆彪,秦勇,陈世悦,等.多煤层储层能量垂向分布特征及控制机理[J].地质学报,2013,87(1):139.
    [9] 赵金,张遂安.煤层气井底流压生产动态研究[J].煤田地质与勘探,2013,41(2):21-25.
    [10] 杜严飞,吴财芳,邹明俊,等.煤层气排采过程中煤储层压力传播规律研究[J].煤炭工程,2011(7):87.
    [11] Airey E M. Gas emission from broken coal:an experimental and theoretical investigation[J]. International Journal of Rock Mechanics and Mining Sciences,1968,5(6):475-494.
    [12] Joubert J L,Grein C T,Bienstock D.Sorption of methane in moist coal[J].Fuel,1973,52(3):181-185.
    [13] McKee C R,Bumb A C,Koenig R A.Stress-dependent permeability and porosity of coal and other geologic formations[J].SPE Formation Evaluation, 1988,3(1):81-91.
    [14] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J].Geological Society ,1996, 109(1):197-212.
计量
  • 文章访问数:  229
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回