地面井预抽瓦斯运移规律数值模拟研究
Numerical Study on Gas Migration Laws for Gas Pre-drainage of Surface Well
-
摘要: 基于气固耦合理论,建立了地面井预抽瓦斯的气固耦合力学模型和数值计算模型,并分析了地应力、储层压力等因素对地面井预抽瓦斯效果的影响。计算结果表明:地应力与煤层产气率之间呈现非线性负相关关系。抽采前期瓦斯的产出速率随地应力的增大而显著变小,随着抽采的进行,地应力对产出速率控制性逐渐减弱;储层压力与瓦斯产气率呈正相关关系。煤层瓦斯压力越大,初始瓦斯抽采效率越高,抽采产量越大,随着抽采时间的增加,煤层瓦斯压力下降,瓦斯抽采效率迅速降低;瓦斯产出速率由煤体渗透率和储层瓦斯压力梯度两者共同决定,抽采初期前者对瓦斯产出速率的控制性占主导地位,随着抽采的进行前者对其控制性要逐渐小于后者。Abstract: Based on gas-solid coupling theory, we established gas-solid coupling seepage mechanics model and numerical model for surface well pre-drainage gas, and analyzed the effect of in-situ stress and gas pressure on surface well gas drainage. The calculation results show that in-situ stress presents nonlinear negative relationship with gas production rate; output rate of gas extraction from the early stage becomes smaller with the increasing of stress significantly, and the control of in-situ stress on gas output rate is gradually weakened with the advancing of extracting; reservoir pressure is positively related to gas output rate, and the larger of coal seam gas pressure, the greater of the initial gas extraction efficiency, the higher of extraction yield, and the gas pressure will decrease with the increase of the drainage time, and the gas drainage rate decreases rapidly; the gas production rate is controlled by coal seam permeability and coal reservoir gas pressure gradient, and the former has dominant control on gas production rate at early extraction stage, and the controlling of former is less than that of latter with the advancing of extracting.
-
Keywords:
- surface borehole /
- gas pre-drainage /
- gas-solid coupling /
- migration law /
- numerical simulation
-
-
[1] 袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报,2008,27(7):1370-1379. [2] 孙东玲,孙海涛.煤矿采动区地面井瓦斯抽采技术及其应用前景分析[J].煤炭科学技术,2014,42(6):49-52. [3] 袁亮,郭华,李平,等.大直径地面钻井采空区采动区瓦斯抽采理论与技术[J].煤炭学报,2013,38(1):1. [4] SANG Shuxun, XU Hongjie, FANG Liangcai, et al. Stress relief coalbed methane drainage by surface vertical wells in China [J].International Journal of Coal Geology,2010,82(3/4): 196-203. [5] 张遂安.采煤采气一体化理论与实践[J].中国煤层气,2006,3(4):14-16. [6] 梁运培.淮南矿区地面钻井抽采瓦斯技术实践[J].采矿与安全工程学报,2007,24(4):409-413. [7] 武杰,桑树勋,方良才,等.淮南矿区保护层开采卸压范围及瓦斯抽采地面井部署[J].煤田地质与勘探,2010,38(3):10-14. [8] 秦伟,许家林,彭小亚,等.老采空区瓦斯抽采地面钻井的井网布置方法[J].采矿与安全工程学报,2013,30(2):289-295. [9] 李日富.地面钻井抽采负压对采空区气体流场分布影响[J].煤炭科学技术,2012,40(7):38-40. [10] 周福宝,夏同强,刘应科,等.地面钻井抽采卸压煤层及采空区瓦斯的流量计算模型[J].煤炭学报,2010,35(10):1638-1643. [11] 涂敏.低渗透性煤层群卸压开采地面钻井抽采瓦斯技术[J].采矿与安全工程学报,2013(5):766-772. [12] 张东升,范钢伟,任天祥.高瓦斯低透气性薄煤层地面瓦斯抽采井设计及优化[J].煤炭工程,2010(8):4-7. [13] 黄华州,桑树勋,方良才,等.采动区远程卸压煤层气抽采地面井产能影响因素[J].煤田地质与勘探,2010,38(2):18-22. [14] 王志亮,杨仁树.地面钻井卸压瓦斯抽采技术[J].煤矿安全,2011,42(10):22-24. -
期刊类型引用(1)
1. 赵佳佳,田世祥,杨家向,江泽标. 基于知识图谱的煤矿热动力灾害可视化研究. 煤矿安全. 2023(03): 33-39 . 本站查看
其他类型引用(0)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 1