基于AVO反演技术的赵家寨煤矿煤层瓦斯含量分布预测
Distribution Predicting of Coal Seam Gas Content Based on AVO Inversion Technology in Zhaojiazhai Coal Mine
-
摘要: 为预测赵家寨煤矿14采区煤层瓦斯含量分布,结合赵家寨煤矿14采区勘探地震资料,基于截距和梯度属性,得到纵波阻抗、横波阻抗、极化参数、密度和伪泊松比等地震属性。地震属性与煤层含气量之间具有相关性,瓦斯含量高的煤层一般能形成较强的AVO 异常,瓦斯含量低的煤层AVO异常较弱。利用AVO反演技术,建立不同地震属性与煤层瓦斯含量之间的相关关系,从而获得赵家寨煤矿14采区煤层瓦斯含量分布。研究表明,煤层瓦斯含量预测结果与实测瓦斯含量误差小,吻合性好,说明AVO 反演技术在一定条件下适用于预测煤层瓦斯含量分布。Abstract: To predict gas content distribution in No.14 mining area of Zhaojiazhai Coal Mine, combined with the exploration seismic data, based on intercept and gradient properties, seismic attributes of P-wave impedance, shear impedance, polarization parameters, density and pseudo-Poisson's ratio are obtained. There is a correlation between seismic attributes and coalbed gas, high gas content of coal seam generally forms a strong AVO anomaly, low gas content of coal seam AVO anomaly is weak. By AVO inversion technique, a correlation between the different seismic attributes and coal seam gas content is established, and Zhaojiazhai coal seam gas distribution content of No.14 mining area is obtained. The study shows that the prediction error between predicted gas content and measured gas content at the coal seam of borehole is low, which indicates that the prediction of coal-bed gas content by the AVO inversion technique is a valid approach.
-
-
[1] 胡朝元,彭苏萍,杜文凤,等.利用地震AVO反演预测煤与瓦斯突出区[J].天然气地球科学,2011,22(4):727-732. [2] 彭苏萍,王宏伟,杜文凤,等.HTI煤层AVO响应特征及其影响因素[J].煤炭学报,2013,38(10):1715. [3] 彭苏萍,杜文凤,殷裁云,等.基于AVO反演技术的煤层含气量预测[J].煤炭学报,2014,39(9):1793. [4] 孙斌,杨敏芳,孙霞,等.基于地震AVO属性的煤层气富集区预测[J].天然气工业,2010,30(6):15-18. [5] 杜文凤,彭苏萍,王珂,等.瓦斯突出煤和非突出煤AVO响应的比较[J].中国煤炭地质,2010,22(6):810-815. [6] 邓小娟,彭苏萍,杜文凤,等.薄煤层P-SVAVO正演研究[J].煤炭学报,2012,37(1):62-66. [7] 高云峰.AVO技术在煤层瓦斯突出区预测中的应用[D].北京:中国矿业大学(北京),2006. [8] 彭苏萍,高云峰,杨瑞召,等.AVO探测煤层瓦斯富集的理论探讨和初步实践:以淮南煤田为例[J].地球物理学报,2005,48(6):1475-1485. [9] 陈建阳,张志杰,于兴河.AVO技术在水合物研究中的应用及应注意的问题[J].天然气地球科学,2005,16(1):123-126. [10] 常锁亮,杨起,刘大锰,等.煤层气储层物性预测的AVO技术对地震纵波资料品质要求的探讨[J].地球物理学进展,2008,23(4):1236-1243.
计量
- 文章访问数: 258
- HTML全文浏览量: 0
- PDF下载量: 0