• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于震动波CT探测技术的冲击危险预测

李静, 巩思园, 李慧, 孙尚鹏

李静, 巩思园, 李慧, 孙尚鹏. 基于震动波CT探测技术的冲击危险预测[J]. 煤矿安全, 2016, 47(7): 69-72.
引用本文: 李静, 巩思园, 李慧, 孙尚鹏. 基于震动波CT探测技术的冲击危险预测[J]. 煤矿安全, 2016, 47(7): 69-72.
LI Jing, GONG Siyuan, LI Hui, SUN Shangpeng. Prediction of Rock Burst Hazard Based on Shock Wave CT Detection Technology[J]. Safety in Coal Mines, 2016, 47(7): 69-72.
Citation: LI Jing, GONG Siyuan, LI Hui, SUN Shangpeng. Prediction of Rock Burst Hazard Based on Shock Wave CT Detection Technology[J]. Safety in Coal Mines, 2016, 47(7): 69-72.

基于震动波CT探测技术的冲击危险预测

Prediction of Rock Burst Hazard Based on Shock Wave CT Detection Technology

  • 摘要: 为探究三河尖煤矿冲击矿压显现机理和大范围探测工作面围岩应力状态,采用震动波CT探测技术进行了区域应力场反演,构建了冲击危险性技术指标,对冲击危险区域进行了预测。研究结果表明:震动波波速和应力场呈正相关关系,9煤层工作面临近7煤上山保护煤柱侧出现高波速和高波速梯度异常区,与“1.30”冲击显现区基本吻合;震动波CT技术能够实现大范围煤岩体应力探测,动态评价冲击危险区域,进而采取针对性卸压解危措施。
    Abstract: In order to study the rock burst occurring in Sanhejian Coal Mine and detect large-scale stress state of working face, the stress field inversion was carried out by shock wave CT exploration technology to establish technical indexes and predict rock burst hazard area. The results indicate that seismic wave velocity is positively related with stress, and the working face of No.9 coal seam near uphill coal pillar of No.7 coal seam is located in high wave velocity and high velocity gradient anomaly area, which basically tallies with " 1.30 " rock burst zone. Large-scale stress of coal and rock mass can be detected and rock burst hazard area can be distinguished by shock wave CT technique so as to take measures for pressure relief.
  • [1] 窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006:41-44.
    [2] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205.
    [3] 曲效成,姜福兴,于正兴,等.基于当量钻屑法的冲击地压监测预警技术研究及应用[J].岩石力学与工程学报,2011,30(11): 2346-2351.
    [4] 刘金海,姜福兴,王乃国,等.深井特厚煤层综放工作面支承压力分布特征的实测研究[J].煤炭学报,2011, 36(S2):18-22.
    [5] ZHAO Yongguo, LI Qin, GUO Hong, et al. Seismicattenuation tomography in frequency domain and its application to engineering[J]. Science in China,2000,43(4): 431-438.
    [6] HOSSEINI N, ORAEE K, SHAHRIAR K, et al. Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT)[J].Journal of Central South University, 2013, 19(8):2297-2306.
    [7] LURKA A. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography[J].China University of Mining & Technology, 2008, 18(2): 177-181.
    [8] 窦林名,蔡武,巩思园,等.冲击危险性动态预测的震动波 CT 技术研究[J].煤炭学报,2014,39(2):238.
    [9] 曹安业,井广成,窦林名,等.孤岛面开采强矿震异常区的被动声波探测技术及应用[J].采矿与安全工程学报, 2015,32(1):20-27.
    [10] YALE D. Recent advances in rock physics[J]. Geophysics,1985, 50(12):2480-2491.
    [11] NUR A, SIMMONS G. Stress-induced velocity anisotropy in rock:an experimental study[J]. Journal of Geophysical Research,1969,74(27):6667-6674.
    [12] 巩思圆.矿震震动波波速层析成像原理及其预测煤矿冲击危险应用实践[D].徐州:中国矿业大学,2010.
    [13] CAI W, DOU L M, GONG S Y. Quantitative analysis of seismic velocity tomography in rock burst hazard assessment[J]. Nat Hazards, 2015, 75:2453-2465.
计量
  • 文章访问数:  355
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 发布日期:  2016-07-19

目录

    /

    返回文章
    返回