• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤巷围岩分类的Fisher判别分析法

刘年平, 王宏图, 胡慧慧

刘年平, 王宏图, 胡慧慧. 煤巷围岩分类的Fisher判别分析法[J]. 煤矿安全, 2016, 47(5): 209-211.
引用本文: 刘年平, 王宏图, 胡慧慧. 煤巷围岩分类的Fisher判别分析法[J]. 煤矿安全, 2016, 47(5): 209-211.
LIU Nianping, WANG Hongtu, HU Huihui. Fisher Discriminant Analysis Method for Classifying Mine-lane Surrounding Rock[J]. Safety in Coal Mines, 2016, 47(5): 209-211.
Citation: LIU Nianping, WANG Hongtu, HU Huihui. Fisher Discriminant Analysis Method for Classifying Mine-lane Surrounding Rock[J]. Safety in Coal Mines, 2016, 47(5): 209-211.

煤巷围岩分类的Fisher判别分析法

Fisher Discriminant Analysis Method for Classifying Mine-lane Surrounding Rock

  • 摘要: 基于Fisher判别理论建立了煤巷围岩分类的Fisher判别分析(FDA)模型。选取巷道埋深、巷道跨度、采动影响系数,围岩强度、松动圈厚度和节理发育情况6个指标因子作为FDA模型的预测指标体系,以实测数据作为训练样本,获得了相应的判别函数。通过分析计算,去掉了重要性较弱的松动圈厚度1个指标,得到了4个判别函数。为了验证模型的有效性,首先利用15组实测数据作为学习样本对模型进行训练,采用回代估计法检验模型的有效性,回判的误判率为0,然后将建立的模型应用于同一地区的实际工程数据判别中,判别效果较好。结果表明,FDA模型简单、准确,是快速判别煤巷围岩分类的一种有效方法。
    Abstract: Based on Fisher discriminant theory, the Fisher Discriminant Analysis (FDA) model was established for classifying mine-lane surrounding rocks. Six factors such as roadway depth, roadway span, coefficient of mining influence, strength of surrounding rock, thickness of loose zone, situation of joint development were selected as the indicator system of the FDA mode. Discriminant function for classifying mine-lane surrounding rocks is obtained in accordance with the measured data as training samples. One weak indicator, which is thickness of loose zone, was removed from the indicator system through analysis, and then we got four discriminate functions. In order to verify the validity of the FDA model, 15 groups of measured data are used as samples to make training, the backward substitution method was adopted to verify the effectiveness of the model, with the misjudgment rate of 0, then, the FDA model was applied to engineering data in the same area, and the effect is good. The results show that the FDA model is simple and accurate; it is an effective method for the rapid identification of the classification of mine-lane surrounding rocks.
  • [1] 王德润.神经网络在煤巷围岩分类中的应用[J].矿山压力与顶板管理,1997,3(4):108-110.
    [2] 朱一丁,马文涛.回采巷道围岩分类的支持向量机方法[J].采矿与安全工程学报,2006,23(3):362-365.
    [3] 张乐文,邱道宏,李术才,等.基于粗糙集和理想点法的隧道围岩分类研究[J].岩土力学,2011,32(S1): 171-175.
    [4] 庞建勇,郭兰波.平顶山矿区煤巷围岩综合分类方法探讨[J]. 岩石力学与工程学报,2006,25(1):179.
    [5] 申艳军,徐光黎,张亚飞,等.基于集对分析的可拓学方法在地下洞室围岩分类中的应用[J].地质科技情报,2010,29(5):125-130.
    [6] 李春萍,郝会兵.煤巷围岩分类的Bayes判别分析法[J].煤炭学报,2011,36(S2):304-307.
    [7] 邵良杉,徐波.基于Fisher判别分析的冲击地压危险性等级预测[J].金属矿山,2015,44(1):138-144.
    [8] 刘年平,王宏图,袁志刚,等.砂土液化预测的Fisher判别模型及应用[J].岩土力学,2012,33(2): 554-557.
    [9] 胡汉华,刘征,李孜军,等.硫化矿石自燃倾向性等级分类的Fisher判别分析法[J].煤炭学报,2010,35(10): 1674-1679.
    [10] 李秀珍,王成华,宋刚.基于Fisher判别分析法的潜在滑坡判识模型及其应用[J].中国地质灾害与防治学报,2009(4): 23-26.
    [11] 张文泉,张广鹏,李伟,等.煤层底板突水危险性的Fisher判别分析模型[J].煤炭学报,2013,38(10): 1831-1836.
计量
  • 文章访问数:  219
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2016-05-19

目录

    /

    返回文章
    返回