[1] 朱建波,马斌文,谢和平,等.煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J].煤炭学报,2022,47(9):3396-3409.
ZHU Jianbo, MA Binwen, XIE Heping, et al. Differences and connections between mining seismicity and coal bursts in coal mines and preliminary study on coal bursts induced by mining seismicity[J]. Journal of China Coal Society, 2022, 47(9): 3396-3409.
[2] 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):1-6.
QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6.
[3] 王桂峰,刘阳,曹安业,等.冲击地压的三参量能量致冲准则及多场监测预警和动态防治技术[J].采矿与安全工程学报,2021,38(5):895-901.
WANG Guifeng, LIU Yang, CAO Anye, et al. Rock burst energy criterion with three parameters and multi-field monitoring, early warning, and dynamic control and prevention[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 895-901.
[4] 何生全,何学秋,宋大钊,等.冲击地压多参量集成预警模型及智能判识云平台[J].中国矿业大学学报,2022,51(5):850-862.
HE Shengquan, HE Xueqiu, SONG Dazhao, et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology, 2022, 51(5): 850-862.
[5] 王世斌,侯恩科,王双明,等.煤炭安全智能开采地质保障系统软件开发与应用[J].煤炭科学技术,2022, 50(7):13-24.
WANG Shibin, HOU Enke, WANG Shuangming, et al. Development and application of geological guarantee system software for safe and intelligent coal mining[J]. Coal Science and Technology, 2022, 50(7): 13-24.
[6] 裴艳宇,杨小彬,传金平,等.一维卷积神经网络特征提取下微震能级时序预测[J].工程科学学报,2021, 43(7):1003-1009.
PEI Yanyu, YANG Xiaobin, CHUAN Jinping, et al. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 1003-1009.
[7] 孙继平,余星辰.基于声音识别的煤矿重特大事故报警方法研究[J].工矿自动化,2021,47(2):1-5.
SUN Jiping, YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation, 2021, 47(2): 1-5.
[8] 陈结,高靖宽,蒲源源,等.冲击地压预测预警的机器学习方法[J].采矿与岩层控制工程学报,2021,3(1):53-64.
CHEN Jie, GAO Jingkuan, PU Yuanyuan, et al. Machine learning method for predicting and warning of rockbursts[J]. Journal of Mining and Strata Control Engineering, 2021, 3(1): 53-64.
[9] 祁和刚,夏永学,陆闯,等.冲击地压矿井智能化防冲控采技术的思考[J].煤炭科学技术,2022,50(1):151-158.
QI Hegang, XIA Yongxue, LU Chuang, et al. Thinkingabout intelligent technology of rockburst prevention and controlled mining in rockburst mine[J]. Coal Science and Technology, 2022, 50(1): 151-158.
[10] 齐庆新,李海涛,李晓鹏.煤矿冲击危险性的定性与定量评价研究[J].煤炭科学技术,2021,49(4):12 -19.
QI Qingxin, LI Haitao, LI Xiaopeng. Qualitative and quantitative evaluation of impact risk in underground mine[J]. Coal Science and Technology, 2021, 49(4): 12-19.
[11] 魏立科,姜德义,王翀,等.煤矿冲击地压灾害风险监察智能分析系统关键技术架构[J].煤炭学报,2021, 46(S1):63-73.
WEI Like, JIANG Deyi, WANG Chong, et al. Key technological architecture of the intelligent monitoring-analysissystem for coal mine rockburst risk supervision[J]. Journal of China Coal Society, 2021, 46(S1): 63 -73.
[12] GONG Fengqiang, LI Xibing, ZHANG Wei. Rockburst prediction of underground engineering based on Bayes discriminant analysis method[J]. 2010, 31(S1): 370-377.
[13] PU Y Y, APELD B, LINGGAB. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J]. Tunnelling and Underground Space Technol, 2019(90): 12-18.
[14] 贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):343-348.
JIA Yipeng, LV Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 343-348.
[15] SHIRANI Faradonbeh R, Taheri A. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques[J]. Engineering with Computers, 2019, 35: 659-675.
[16] 宫凤强,赵英杰,王云亮,等.煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J].煤炭学报,2022,47(5):1974-2010.
GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974-2010.
[17] 王爱文,王岗,代连朋,等.基于临界应力指数法巷道冲击地压危险性评价[J].煤炭学报,2020,45(5):1626-1634.
WANG Aiwen, WANG Gang, DAI Lianpeng, et al. Evaluation on the rock burst risks of roadway using critical stress index method[J]. Journal of China Coal Society, 2020, 45(5): 1626-163
[18] 朱馨,李建微,郭伟,等.基于机器学习的森林火险预测模型[J].中国安全科学学报,2022,32(9):152-157.
ZHU Xin, LI Jianwei, GUO Wei, et al. Forest fire risk prediction model based on machine learning[J]. China Safety Science Journal, 2022, 32(9): 152-157.
[19] 张凯,张科,李昆.主元分析-神经网络岩爆等级预测模型[J].中国安全科学学报,2021,31(3):96-104.
ZHANG Kai, ZHANG Ke, LI Kun. Prediction model of rockburst grade based on PCA-neural network[J]. China Safety Science Journal, 2021, 31(3): 96-104.
[20] 王爱文,王岗,代连朋,等.基于临界应力指数法巷道冲击地压危险性评价[J].煤炭学报,2020,45(5):1626-1634.
WANG Aiwen, WANG Gang, DAI Lianpeng, et al. Evaluation on the rock burst risks of roadway using critical stress index method[J]. Journal of China Coal Society, 2020, 45(5): 1626-163.
[21] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020, 45(5):1567-1584.
QI Qingxin, PAN Yishan, LI Haitao, et al. Theoretical basis and key technology of prevention and control of coal-rockdynamic disasters in deep coal mining[J]. Journal of China Coal Society, 2020, 45(5): 1567-1584.
[22] 高明仕,贺永亮,陆菜平,等.巷道内强主动支护与弱结构卸压防冲协调机制[J].煤炭学报,2020,45(8):2749-2759.
GAO Mingshi, HE Yongliang, LU Caiping, et al. Coordination mechanism of internal strong active support,soft structurepressure relief and anti-punching of roadway[J]. Journal of China Coal Society, 2020, 45(8): 2749-2759.
[23] 高明仕,赵一超,温颖远,等.震源扰动型巷道冲击矿压破坏力能准则及实践[J].煤炭学报,2016,41(4):808-814.
GAO Mingshi, ZHAO Yichao, WEN Yingyuan, et al. Stress and energy criterion of the roadway destruction subjected to disturbance type rockburst and its practice[J]. Journal of China Coal Society, 2016, 41(4): 808-814.
|