• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

卸压瓦斯抽采钻孔终孔合理位置确定方法

解俊祥, 王红胜, 樊启文, 双海清, 赵晓东, 杜政贤, 由临东

解俊祥, 王红胜, 樊启文, 双海清, 赵晓东, 杜政贤, 由临东. 卸压瓦斯抽采钻孔终孔合理位置确定方法[J]. 煤矿安全, 2015, 46(9): 16-19.
引用本文: 解俊祥, 王红胜, 樊启文, 双海清, 赵晓东, 杜政贤, 由临东. 卸压瓦斯抽采钻孔终孔合理位置确定方法[J]. 煤矿安全, 2015, 46(9): 16-19.
XIE Junxiang, WANG Hongsheng, FAN Qiwen, SHUANG Haiqing, ZHAO Xiaodong, DU Zhengxian, YOU Lindong. Determination Method for Borehole Bottom Location of Pressure-relief Gas Extraction Boreholes[J]. Safety in Coal Mines, 2015, 46(9): 16-19.
Citation: XIE Junxiang, WANG Hongsheng, FAN Qiwen, SHUANG Haiqing, ZHAO Xiaodong, DU Zhengxian, YOU Lindong. Determination Method for Borehole Bottom Location of Pressure-relief Gas Extraction Boreholes[J]. Safety in Coal Mines, 2015, 46(9): 16-19.

卸压瓦斯抽采钻孔终孔合理位置确定方法

Determination Method for Borehole Bottom Location of Pressure-relief Gas Extraction Boreholes

  • 摘要: 准确掌握裂隙带发育高度以及合理布置抽采钻孔终孔位置是提高卸压瓦斯抽采效果的关键。针对李雅庄煤矿2-603工作面地质条件,采用了理论计算、数值模拟及钻孔抽采试验等方法确定了合理的钻孔终孔位置。首先,理论计算裂隙带平均高度为32.8~44 m。其次,数值模拟分析表明了裂隙带集中分布在距离底板13~25 m、38.6~50 m、上山采动角62°的范围内。最后,在高抽巷内向裂隙带内不同层位布置6个抽采钻孔,通过钻孔抽采效果对比分析确定钻孔合理终孔位置位于顶板44 m处。该方法可在类似地质条件下推广应用。
    Abstract: To master the height of the fractured zone and to arrange drainage borehole's bottom location are the key to improve the effect of the pressure-relief gas extraction. Aiming at the geological conditions of the Liyazhuang Mine 2-603 working face, the reasonable drainage borehole's bottom location was determined by the method of theoretical calculation, numerical simulation and drilling extraction test. Firstly, the average height of the fractured zone was 32.8 m to 44 m by the theoretical calculation. Secondly, the numerical simulation analysis showed that the fractured zone was at the height of 13 m to 25 m, 38.6 m to 50 m to the floor, and in the rise-entry mining angle of 62°. Finally, in the high level gas drainage roadway, six drainage boreholes were arranged in the different layers of the fractured zone. The reasonable location of the borehole bottom was at the height of 44 m to the roof based on the gas extraction effect of the borehole. The method can be applied in the similar geological conditions.
  • [1] 郭玉森,林柏泉,吴传始.围岩裂隙演化与采动卸压瓦斯储运的耦合关系[J].采矿与安全工程学报,2007,24(4):414-417.
    [2] 刘桂丽,杨跃奎,撒占友.采空区上覆岩层裂隙发育及瓦斯流动规律分析[J].矿业研究与开发,2012(8):60-64.
    [3] 齐庆新,彭永伟,汪有刚,等.基于煤体采动裂隙场分区的瓦斯流动数值分析[J].煤矿开采,2010,15(5):8-10.
    [4] 程虹铭,朱林剑,王博.厚煤层采场覆岩裂隙发育规律及高位钻孔参数优化研究[J].煤炭技术,2014,33(8):131-134.
    [5] 薛景明.采煤工作面上隅角瓦斯治理技术[J].煤矿安全,2011(2):27-29.
    [6] 赵君.焦家寨矿5#煤层综放工作面瓦斯综合治理技术[J].煤矿安全,2011(12):19-21.
    [7] 孙凯民,许德岭,杨昌能.利用采场覆岩裂隙研究优化采空区瓦斯抽放参数[J].采矿与安全工程学报,2008,25(3):366-370.
    [8] 张海荣.较薄厚煤层采场覆岩“三带”高度研划分理论计算与数值模拟研究[J].煤炭工程,2013(9):83.
    [9] 刘波,韩彦辉.FLAC原理实例与应用指南[M].北京:人民交通出版社,2005.
计量
  • 文章访问数:  374
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2015-09-19

目录

    /

    返回文章
    返回