复合煤层群双重卸压应力时空演化规律研究
Study on Space-time Evolution of Stress Under Double Pressure Relief in Composite Coal Seam Group
-
摘要: 为探索复合煤层群保护层开采过程中,在双重卸压条件下首采保护层和次采保护层过程中卸压特征的不同,采用相似材料实验、计算机数值模拟研究双重卸压覆岩裂隙发育、变形特征和应力分布时空演化规律,通过对比分析表明:在二次保护层开采条件下,覆岩部分裂隙经历了二次扩张,压实,吻合,部分裂隙在空间上往深部发育,裂隙带高度范围增加。应力在首采保护层应力状态的影响下进行再分布,随开采过程形成了5个应力分布区域,分别为工作面超前应力集中区、卸压区、压实区、采空区后方应力集中区、原岩应力区。双重卸压下采空区两端卸压效果更为显著,超前应力集中系数较首采保护层要高,采空区压实速度较首采保护层快,同时被保护层卸压程度和范围均显著增加。Abstract: To explore different characteristics of pressure relief in the protective layer mining process of composite coal seam group, under the condition of double pressure-relief mining of closed distance coal seams group, we study the strata fracture development characteristics and stress distribution with time and space evolution. Through the similar material experiment and computer numerical simulation, the results show that the double pressure-relief mining results in complicate process of some of the overlying rock fracture, such as second expansion, compaction and match. Part of the crack develops to the deep in the space, and the fracture zone height increases in the vertical. The stress achieves redistribution under the influence of initial mining protective layer, and forms five stress area in the mining process, the effect is more significant on both ends of the mined-out area under the condition of double pressure-relief, the stress concentration factor is relatively higher to initial mining protective layer; compaction speed is faster than initial mining protective layer of mined-out area; unloading degree and range of protected layer are significantly increased.
-
Keywords:
- protective layer /
- stress /
- crack /
- double pressure relief /
- coal seam group /
- space-time evolution
-
-
[1] 袁亮. 低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报, 2008, 27(7): 1370-1379. [2] Ying-Ke L, Fu-Bao Z, Lang L, et al. An experimental and numerical investigation on the deformation of overlying coal seams above double-seam extraction for controlling coal mine methane emissions[J].International Journal of Coal Geology, 2011, 87(2): 139-149. [3] 程远平, 俞启香, 袁亮, 等. 煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报, 2004, 33(2):132-136. [4] 程远平, 周德永, 俞启香, 等. 保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报, 2006, 23(1):12-18. [5] 魏刚. 红菱煤矿保护层开采裂隙演化规律的相似模拟实验[J].辽宁工程技术大学学报: 自然科学版,2012,33(2):55-58. [6] 王英伟. 远距离保护层开采覆岩破裂规律的相似模拟研究[J].煤炭技术,2012,20(3):43. [7] 李树刚, 魏宗勇, 潘红宇, 等. 上保护层开采相似模拟实验台的研发及应用[J].中国安全生产科学技术,2013,22(3):2. [8] 肖同强, 李允生, 顾树生. 高瓦斯煤层群保护层开采卸压效果数值模拟[J].河南理工大学学报: 自然科学版, 2013, 32(5):527-530. [9] 田坤云, 孙文标, 魏二剑. 上保护层开采保护范围确定及数值模拟[J].辽宁工程技术大学学报: 自然科学版, 2013,34(1):7-13. [10] 卢守青, 程远平, 王海锋, 等. 红菱煤矿上保护层最小开采厚度的数值模拟[J].煤炭学报, 2012, 20(6):37. [11] 翟成. 近距离煤层群采动裂隙场与瓦斯流动场耦合规律及防治技术研究[D].徐州: 中国矿业大学, 2008.
计量
- 文章访问数: 403
- HTML全文浏览量: 0
- PDF下载量: 0