• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于低温氮吸附法的焦煤孔隙表面分形特征

高旭

高旭. 基于低温氮吸附法的焦煤孔隙表面分形特征[J]. 煤矿安全, 2014, 45(12): 20-23.
引用本文: 高旭. 基于低温氮吸附法的焦煤孔隙表面分形特征[J]. 煤矿安全, 2014, 45(12): 20-23.
GAO Xu. Surface Fractal Characteristics of Coking Coal Pore Based on Low Temperature Nitrogen Adsorption[J]. Safety in Coal Mines, 2014, 45(12): 20-23.
Citation: GAO Xu. Surface Fractal Characteristics of Coking Coal Pore Based on Low Temperature Nitrogen Adsorption[J]. Safety in Coal Mines, 2014, 45(12): 20-23.

基于低温氮吸附法的焦煤孔隙表面分形特征

Surface Fractal Characteristics of Coking Coal Pore Based on Low Temperature Nitrogen Adsorption

  • 摘要: 以焦煤的孔隙表面及其分形特征为研究对象,基于低温氮吸附法实验,测定煤样BET和Langmiur比表面积。根据低温氮吸附和脱附曲线特征,定性分析不同焦煤煤样BET法比表面积测值与实际值的偏差。分析比表面积与BJH脱附微孔孔容的关系,认为焦煤比表面积主要受控于脱附微孔孔容。分别计算Freundlich表面分形维数、Langmiur表面分形维数、FHH表面分形维数,认为造成较低覆盖度下FHH表面分形维数大于较高覆盖度下FHH表面分形维数的原因:一是焦煤表面具备多重分形特征;二是多层吸附(毛细凝聚)导致焦煤表面粗糙度下降。较低覆盖度下FHH表面分形维数与焦煤比表面积具有弱正相关性。
    Abstract: Taking the pore surface and its fractal feature of coking coal as the research object, we applied low temperature nitrogen adsorption to measure BET and Langmiur specific surface area. The features of isothermal adsorption and desorption curves were analyzed to compare the two methods of estimating specific surface area. The specific surface area of coking coal is relative to BJH desorption micropore volume. Three fractal methods were applied to analyze the surface fractal property of coking coal including Fractal Freundlich, Fractal Langmiur and Fractal FHH. The FHH surface fractal dimension at low coverage is larger than that at high coverage. There are two reasons for that, multi fractal and capillary condensation. Under the low coverage, FHH surface fractal dimension and coking coal specific surface area has a weak positive correlation.
  • [1] 璞芸辉,朱建华,藏维良.多孔介质内孔表面的分形表征[J].化工学报1997,48(1):60-66.
    [2] 赵振国.吸附法研究固体表面的分形性质[J].大学化学,2005,20(4):22-28.
    [3] 马正飞,金叶玲,刘艳梅.分形BET吸附模型[J].高校化学工程学报,1994,3(8):288-291.
    [4] 杨峰,宁正福,王庆.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.
    [5] 徐龙君,张代钧,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995,18(1):31-38.
    [6] Ismail I M K, Pf eif er P. Fract al Analysi s and Surf ace Roughness of Nonporous Carbon Fibers and Carbon Blacks[J]. Langmuir,1994(10):1532-1538.
    [7] Xu L,Zhang D,Xian X.Fractal dimensions of coals and cokes[J].Journal of Colloid and Interface Science,1997,190(1):357-359.
    [8] Qi H, Ma J, Wong P Z. Adsorption isotherms of fractal surfaces [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,206: 401-407.
    [9] Pyun S I,Rhee C K. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J].Electrochimica Acta,2004,49: 4171-4180.
    [10] Rigby S P.Predicting surface diffusivities of molecules from equilibrium adsorption isotherms[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,262: 139-149.
    [11] 徐龙君,张代钧,鲜学福.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996,24(1):81-86.
    [12] 赵振国.介孔吸附剂表面分形分析[J].化学学报,2004,62(2): 219-223.
    [13] 徐龙君,顾乐观,鲜学福.分形吸附模型[J].煤炭转化,2000,23(1):91-93.
    [14] 宋晓夏,唐跃刚,李伟,等.中梁山南矿构造煤吸附孔分形特征[J].煤炭学报,2013,38(1):134-139.
    [15] Jaroniec M , Lu X, Madey R. Thermodynamics of Gas Adsorption on Fractal Surfaces of Heterogeneous Microporous Solids[J].J of Chem Phys,1990,92(12):7589-7595.
计量
  • 文章访问数:  486
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2014-12-19

目录

    /

    返回文章
    返回