• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于多源信息融合的瓦斯涌出量预测方法

邸志强

邸志强. 基于多源信息融合的瓦斯涌出量预测方法[J]. 煤矿安全, 2014, 45(8): 172-174,178.
引用本文: 邸志强. 基于多源信息融合的瓦斯涌出量预测方法[J]. 煤矿安全, 2014, 45(8): 172-174,178.
DI Zhiqiang. Prediction Method of Gas Emission Based on Multi-source Information Fusion[J]. Safety in Coal Mines, 2014, 45(8): 172-174,178.
Citation: DI Zhiqiang. Prediction Method of Gas Emission Based on Multi-source Information Fusion[J]. Safety in Coal Mines, 2014, 45(8): 172-174,178.

基于多源信息融合的瓦斯涌出量预测方法

Prediction Method of Gas Emission Based on Multi-source Information Fusion

  • 摘要: 提出基于多源信息融合的瓦斯涌出量动态预测是一种传统矿井涌出量预测与现代计算机编程相结合的新的矿井瓦斯涌出量预测方法。这种方法通过矿井实测煤层瓦斯含量、地勘瓦斯含量、K1-p或△h2-p关系曲线、煤巷掘进瓦斯涌出反演煤体瓦斯含量等多源信息融合,得出煤层瓦斯赋存规律和较为准确的瓦斯含量分布图,结合瓦斯含量分布和分源预测法构建同等开采工艺条件下煤层瓦斯含量与瓦斯涌出量数学模型,利用新工作面瓦斯涌出数据和矿山统计法不断跟踪及修正瓦斯涌出量数学模型,形成融合后数学模型,实现对已采区域的瓦斯涌出量目标跟踪和未采区域的瓦斯涌出量动态预测。
    Abstract: Dynamic prediction of gas emission based on multi-source information fusion was a kind of new mine gas emission prediction method with a combination of traditional mine gas emission prediction and modern computer programming. Through the multi-source information fusion, such as mine measured gas content, geological exploration gas content, K1-p or △h2-p curve, the inversion coal gas content of coal roadway driving gas emission and so on, it obtained the gas occurrence regularity of coal seam and more accurate gas content distribution. Combined with the gas content distribution and sub source prediction method, it built the mathematical model of coal seam gas content and gas emission under the same mining condition. It used the new working face gas emission data and mine statistical method to track and correct the mathematical model of gas emission constantly, and formed the mathematical model after fusion, thus achieved the target tracking for mining area gas emission and the dynamic prediction of unmining area gas emission.
  • [1] AQ1018-2006 矿井瓦斯涌出量预测方法[S].
    [2] 张子戌,袁崇孚.瓦斯地质数学模型法预测矿井瓦斯涌出量研究[J].煤炭学报,1999,24(4):8.
    [3] 煤炭科学研究总院抚顺分院.矿井瓦斯涌出量预测方法的发展与贡献[J].煤矿安全,2003(S1).
    [4] 周革忠.回采工作面瓦斯涌出量预测的神经网络方法[J].中国安全科学学报,2004(10):18-21.
    [5] 章立清,秦玉金,姜文忠,等.我国矿井瓦斯涌出量预测方法研究现状及展望[J].煤矿安全,2007(8):56.
    [6] 吕贵春,马云东.矿井瓦斯涌出量预测的灰色建模法[J].中国安全科学学报,2004,14(10):22-24.
    [7] 田水承,王曦,王莉,等.改进层次分析法的瓦斯涌出量组合预测方法研究[J].西安科技大学学报,2012,32(1):25-28.
    [8] 岳天祥,刘纪远.多源信息融合数字模型[J].世界科技研究与发展,2001(5).
    [9] 陈科文,张祖平,龙军.多源信息融合关键问题、研究进展与新动向[J].计算机科学,2013,40(8):6-13.
    [10] 淮北矿业集团有限责任公司芦岭煤矿,煤炭科学研究总院重庆研究院.淮北矿业(集团)有限责任公司芦岭煤矿8、10煤层瓦斯地质规律研究报告[R].重庆:煤炭科学研究总院重庆研究院,2010.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2014-08-19

目录

    /

    返回文章
    返回