• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

高温热效应对煤孔隙结构及其吸附特性的影响

李卓睿, 罗新荣, 邱广东, 吕远洋, 路洁心

李卓睿, 罗新荣, 邱广东, 吕远洋, 路洁心. 高温热效应对煤孔隙结构及其吸附特性的影响[J]. 煤矿安全, 2014, 45(7): 219-222.
引用本文: 李卓睿, 罗新荣, 邱广东, 吕远洋, 路洁心. 高温热效应对煤孔隙结构及其吸附特性的影响[J]. 煤矿安全, 2014, 45(7): 219-222.
LI Zhuorui, LUO Xinrong, QIU Guangdong, LYU Yuanyang, LU Jiexin. Influence of Thermal Effect on Pore Structures and Adsorption Properties of Coal[J]. Safety in Coal Mines, 2014, 45(7): 219-222.
Citation: LI Zhuorui, LUO Xinrong, QIU Guangdong, LYU Yuanyang, LU Jiexin. Influence of Thermal Effect on Pore Structures and Adsorption Properties of Coal[J]. Safety in Coal Mines, 2014, 45(7): 219-222.

高温热效应对煤孔隙结构及其吸附特性的影响

Influence of Thermal Effect on Pore Structures and Adsorption Properties of Coal

  • 摘要: 通过对水浴处理温度为40、60、80 ℃的原煤样进行压汞实验以及30 ℃煤的高压等温吸附试验,探究热效应对煤的孔隙结构及其吸附特性影响。实验结果表明:随着水浴温度的升高,煤的孔容、比表面积和孔隙度呈现上升趋势,但各个孔隙所占的孔容比却变化不一,煤体在60~80 ℃温度区间孔隙度随温度的增长速度也远远大于40~60 ℃区间;煤样水浴处理的温度越高,到达吸附极值所需的平衡瓦斯压力越大;等温吸附常数a值亦随水浴温度的升高而增加,且60~80 ℃水浴温度段a值增加量要低于40~60 ℃温度段。
    Abstract: In order to explore the influence of thermal effect on pore structures and adsorption properties of coal, mercury penetration experiments with the coal samples under the water bath temperatures of 40 ℃, 60 ℃ and 80 ℃ and isothermal adsorption experiments of 30 ℃ with coal samples were carried out. The results show that the total pore volume, pore specific surface and porosity of the coal sample increased with increasing temperature of water bath. Every pore has different changing trends of pore volume ratio, and the growth rate of coal porosity increases with temperature from 60 to 80 ℃ is far greater than the temperature from 40 to 60 ℃. The higher of the water bath temperatures of coal samples are, the higher pressures of the gas balance pressure require to reach the absorption maximum. The adsorption constant increases with the temperature of the water bath, but the value of water bath temperature from 60 to 80 ℃ increases less than the temperature from 40 to 60 ℃.
  • [1] 刘卫东,张岩松,王丽华.我国煤矿高温矿井摸底调查情况[J].职业与健康,2012,28(9):1136-1138.
    [2] 王恩远,何学秋.煤岩等多孔介质的分形结构[J].焦作工学院学报,1996,15(4):20-24.
    [3] 徐龙君,张代钧,鲜学福.煤的吸附特征及其应用[J].煤炭转化,1997,20(2):25-31.
    [4] 罗新荣.煤的孔隙结构与容渗性[J].煤炭转化,1998,21(4):41-43.
    [5] 王明寿,汤达桢,张尚虎.煤储层孔隙研究现状及其意义[J].中国煤层气,2004,2(1):9-11.
    [6] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(l):40-44.
    [7] 朱兴珊.煤层孔隙特征对抽放煤层气影响[J].中国煤层气,1996(1):37-39.
    [8] 降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,36(4):609-614.
    [9] 李大伟,王德明,顾俊杰,等.煤物理吸氧量随温度及粒径变化规律的实验研究[J].煤炭科学技术,2008,36(2):42-44.
    [10] 张庆玲,崔永君,曹利戈.煤的等温吸附试验中各因素影响分析[J].煤田地质与勘探,2002,32(2):16.
    [11] 赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29.
计量
  • 文章访问数:  542
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2014-07-19

目录

    /

    返回文章
    返回