复配润湿剂提高煤层注水效果的实验研究
Experimental Study on Improving the Effect of Coal Seam Water Injection with Compound Wetting Agent
-
摘要: 煤层注水是一项最积极有效的减少煤尘产生的措施。为了提高煤层注水的效果,根据润湿剂的复配原理,选取了5种不同类型的表面活性剂与一种中性无机盐进行复配,得到5种不同组分的润湿剂。采用毛细上法分别测量不同浓度下润湿剂的表面张力,测得5种润湿剂的最低表面张力与临界胶束浓度,经过对比,润湿剂A的综合性能优异。并选取了2个不同地区的煤样,采用HARKE-SPCA接触角测定仪测量纯水和润湿剂A溶液在煤样表面的接触角。实践证明,润湿剂A溶液在煤样表面的接触角比纯水要小得多,能够有效降低纯水的表面张力,提高纯水对煤体的润湿效果。Abstract: Coal seam water injection is one of the most active and effective measures to reduce the coal dust generation. In order to improve the effect of coal seam water injection, according to the principle of compound wetting agent, it selected five different types of surface-active agent and a neutral inorganic salt to compound, and obtained five wetting agents with different components. It used capillary rise method to measure the surface tension of wetting agent under different concentrations, and obtained the lowest surface tension and the critical micelle concentration of five wetting agents. By contrast, the wetting agent A had comprehensive excellent performance. Then it selected coal samples in two different regions, with HARKE-SPCA contact angle measuring instrument, it measured the contact angle of pure water and wetting agent A solution on the surface of coal samples. The practice had proved that the contact angle of wetting agent A solution was much smaller than pure water on the surface of coal samples, it could effectively reduce the surface tension of pure water, and improve wetting effect of pure water on the coal.
-
Keywords:
- coal seam water injection /
- dust /
- wetting agent /
- surface tension /
- critical micelle concentration /
- contact angle
-
-
[1] 刘丹,李润之,司荣军,等.瓦斯爆炸诱导沉积煤尘参与爆炸作用模式[J].煤炭学报,2011,36(11):1879-1883. [2] 王维虎.煤层注水防尘技术的应用现状及展望[J].煤炭科学技术,2011,39(1):57-60. [3] 王炜,胥奎.高瓦斯矿井综采工作面粉尘防治技术探讨[J].煤炭工程,2009(6):52-54. [4] 陈贵,王德明,王和堂,等.大断面全岩巷综掘工作面泡沫降尘技术[J].煤炭学报,2012,37(11):1859-1864. [5] 郭晓华,蔡卫,马尚权,等.表面活性剂在煤矿防降尘中的应用实验[J].矿业安全与环保,2010,37(3):27-30. [6] 金龙哲.矿井粉尘防治[M].北京:煤炭工业出版社,1993:207-213. [7] 彭小兰,吴超.化学抑尘剂新进展研究[J].中国安全生产科学技术,2005,1(5):44-47. [8] 金龙哲,杨继星,欧盛南.润湿型化学抑尘剂的试验研究[J].安全与环境学报,2007,7(6):109-112. [9] 杨静,刘丹丹,祝秀林,等.化学抑尘剂的研究进展[J].化学通报,2013,76(4):346-353. [10] 王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004,4(1):70-73. [11] 程燕,蒋仲安,陈仲秋,等.煤层注水中添加表面活性剂的研究[J].煤矿安全,2006,37(3):9-12. [12] 霍灵军,田彦武,郝军.表面活性剂在煤层注水中的应用与实践[J].煤炭技术,2011,30(5):106-108. [13] 赵贯甲,毕胜山,吴江涛,等.毛细上升法表面张力实验系统改进[J].工程热物理学报,2011,32(4):546-548. -
期刊类型引用(7)
1. 徐榕浩,李溱,张天宇,袁新浩,马英鑫. 基于PCA-PSO-BP模型对矿山边坡变形量的预测. 新疆有色金属. 2025(01): 9-11 . 百度学术
2. 钟威. 基于改进遗传算法的露天煤矿失稳边坡临滑预警方法. 露天采矿技术. 2023(01): 20-23+28 . 百度学术
3. 王家臣,李阳春,徐文彬,栾茂旭. 软-陡基底排土场边坡破坏模式与机理. 矿业科学学报. 2021(02): 139-147 . 百度学术
4. 郑新嵛. 中山市某住宅区边坡及挡土墙稳定性评价. 广东土木与建筑. 2021(06): 40-42 . 百度学术
5. 解洪伟,朱东丽. 基于PCA-GWO-SVM的矿山边坡变形预测. 矿山测量. 2020(01): 63-66 . 百度学术
6. 方军. 基于MIDAS-GTS的排土场稳定性分析. 采矿技术. 2020(02): 68-72+76 . 百度学术
7. 万忠明,朱涛,甘怀军,代飞龙. 将军戈壁二号露天煤矿外排土场软弱基底坐落-牵移式滑坡机理. 煤矿安全. 2020(04): 77-80 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 563
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 10