果蝇算法融合SVM的开采沉陷预测模型
Mine Subsided Prediction Model Based on SVM Combined With Fruit Fly Optimization Algorithm
-
摘要: 针对目前开采沉陷预计方法的种种缺陷,提出了一种新的预计方法。将果蝇优化算法(FOA)与支持向量机(SVM)相结合,建立FOA-SVM预测模型。选取煤层倾角、采厚、平均采深等参数作为模型的输入参数,最大下沉量作为模型的输出参数。选取训练集样本,应用FOA对SVM的参数进行寻优,确定最佳的SVM参数。采用预测集样本对该预测模型进行检验,同时将该模型预测性能与其他预测模型进行对比分析。结果表明:与GA-SVM模型、PSO-SVM模型和神经网络预测模型相比,该模型具有更高的预测能力和泛化能力,可以较好地实现对开采沉陷的预测。Abstract: As to the shortcomings of current mine subsided prediction methods, a new method was proposed. Fruit Fly Optimization Algorithm (FOA) was combined with Support Vector Machine (SVM), and FOA-SVM prediction model was built. Seam dip, mining thickness, average mining depth was selected as input parameters of the model; the maximum subsidence was output parameter. Selecting the training set sample, the optimal parameters of SVM was determined with applied FOA. The prediction model was tested by prediction set sample and the prediction performance was compared with other models. The results showed that the model has higher predictive ability and generalization ability compared with GA-SVM model, PSO-SVM model, BP neural network. The model could better realize mining subsidence prediction.
-
-
[1] 金锋,高振森.概率积分法在矿区开采沉陷预测中的应用[J].矿山测量,2011(2):47-48. [2] 柴华彬,邹友峰,梁和平,等.开采沉陷岩移参数研究现状分析[J].河南理工大学学报:自然科学版,2013,32(5):567-570. [3] 吴侃,靳建明,戴仔强,等.开采沉陷在土体中传递的实验研究[J].煤炭学报,2002,27(6):601-603. [4] 李新强,高延法,张庆松.开采沉陷动态数值仿真研究[J].岩石力学与工程学报,2004,23(1):86-90. [5] 曹丽文,姜振泉.人工神经网络在煤矿开采沉陷预计中的应用研究[J].中国矿业大学学报,2002,31(1):26-29. [6] 张振,钮冰.基于支持向量机回归的抗癌药物活性研究[J].计算机与应用化学,2011,28(11):1377-1380. [7] 王春龙,刘建国,赵南京,等.基于支持向量机回归的水体重金属激光诱导击穿光谱定量分析研究[J].光学学报,2013,33(3):314-319. [8] 王晓丹,王积勤.支持向量机研究与应用[J].空军工程大学学报:自然科学版,2004,5(3):49-55. [9] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-43. [10] PAN Wentsao.A new fruit fly optimization algorithm:taking the financial distress model as an example[J].Knowledge-Based Systems,2011,26(7):69-74. [11] 韩俊英,刘成忠.基于细菌趋化的果蝇优化算法[J].计算机应用,2013,33(4):964-966. [12] 牛培峰,麻红波,李国强,等.基于支持向量机和果蝇优化算法的循环流化床锅炉Nox排放特性研究[J].动力工程学报,2013,33(4):267-271. [13] 时静洁,陈利平,石宁,等.基于遗传算法的支持向量机预测有机物自燃点的研究[J].中国安全科学学报,2011,21(7):125-129. [14] 邱景平,邢军,姜谙男,等.基于粒子群支持向量机的矿岩强度指标的超声预测[J].东北大学学报:自然科学版,2012,33(5):731-734.
计量
- 文章访问数: 635
- HTML全文浏览量: 0
- PDF下载量: 0