遗传算法优化BP神经网络预测上覆岩层破坏范围
Genetic Algorithm Optimizing BP Neural Network in Prediction of Overlying Strata Damage Extent
-
摘要: 对吕梁矿区部分煤矿不同煤层的上邻近层瓦斯卸压范围展开了深入的探究和分析,并提出了遗传算法优化BP神经网络预测上覆岩层破坏范围的模型。通过新旧模型对20组矿井开采情况在训练预测冒落带、裂隙带范围的实际对比,可以发现,优化后的网络模型收敛更快、误差更小、拟合效果更佳。Abstract: This paper made in-depth research and analysis about gas pressure relief range of different seams' overlying near layers in part coal mines of Luliang,then proposed the model of the BP neural network by the genetic algorithm in terms of forecasting overlying strata damage extent.Through the actual comparison of training prediction caving zone and fractured zone in exploitation of twenty mines with the old and new model,the optimized network model showed faster convergence,less error and better fitting effect.
-
Keywords:
- overlying near layer /
- BP neural network /
- genetic algorithm /
- optimizing /
- damage extent /
- rock stratum
-
-
[1] 梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(1):32-38. [2] 戴广龙,汪有清,张纯如,等.保护层开采工作面瓦斯涌出量预测[J].煤炭学报,2007,32(4). [3] 窦贤明,杨永国,徐伟伟,等.基于遗传算法和BP神经网络的矿井涌水量预测[J].中国煤炭地质,2009,21(10):38-40. [4] 李敏强,寇纪松.遗传算法的基本理论与应用[M].北京:科学出版社,2002. [5] 姜雷.基于BP神经网络的煤矿瓦斯浓度预测模型构建及仿真[J].矿业安全与环保,2010,37(4):37-39.
计量
- 文章访问数: 1036
- HTML全文浏览量: 0
- PDF下载量: 0