• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

矿用电机车行人安全预警系统

张俊卿, 黄友锐, 凌六一

张俊卿, 黄友锐, 凌六一. 矿用电机车行人安全预警系统[J]. 煤矿安全, 2014, 45(1): 101-103,104.
引用本文: 张俊卿, 黄友锐, 凌六一. 矿用电机车行人安全预警系统[J]. 煤矿安全, 2014, 45(1): 101-103,104.
ZHANG Junqing, HUANG Yourui, LING Liuyi. Pedestrian Safety Warning System of Mine-used Electric Locomotive[J]. Safety in Coal Mines, 2014, 45(1): 101-103,104.
Citation: ZHANG Junqing, HUANG Yourui, LING Liuyi. Pedestrian Safety Warning System of Mine-used Electric Locomotive[J]. Safety in Coal Mines, 2014, 45(1): 101-103,104.

矿用电机车行人安全预警系统

Pedestrian Safety Warning System of Mine-used Electric Locomotive

  • 摘要: 提出了一种基于图像处理的矿用电机行人安全预警系统,系统以TMS320DM642为核心,结合视频采集等相关外围电路完成硬件电路设计;采用梯度方向直方图(HOG)加支持向量机(SVM)的行人识别算法,在OPENCV平台下实现电机车前行轨道上的行人预警。实验结果表明,系统行人识别精度高,可以有效防止电机车伤人事故的发生。
    Abstract: his article proposed a mine-used electric locomotive pedestrian safety warning system based on image processing. The system used TMS320DM642 as the core to complete hardware design which combined with video capture and other related peripheral circuits. It adopted the pedestrian recognition algorithm of gradient orientation histogram (HOG) as well as support vector machine (SVM), and realized electric locomotive pedestrian warning on the forward track in OPENCV platform. The experimental results showed that this system had the high accuracy of pedestrian recognition and could prevent locomotive accident injuries effectively.
  • [1] 吕世斌,李汉汉.基于机器视觉的煤矿平车场安全智能控制系统[J].煤矿安全,2012,43(1):70-72.
    [2] 向征,谭恒良,马争鸣.改进的HOG和Gabor,LBP性能比较[J].计算机辅助设计与图形学学报,2012,24(6):787-792.
    [3] 姚雪琴,李晓华,月激流.基于边缘对称性和HOG的行人检测方法[J].计算机工程,2011,38(5):179.
    [4] 胡正平,杨建秀. HOG特征混合模型结合隐SVM的感兴趣目标检测定位算法[J].信号处理,2011,27(8):1206-1212.
    [5] 贾惠星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].计算机学报,2007,33(1):84-90.
计量
  • 文章访问数:  547
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2014-01-19

目录

    /

    返回文章
    返回