• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

天然CO2注入煤层驱替CH4运移路径上煤体化学结构变化

王立国, 李伟

王立国, 李伟. 天然CO2注入煤层驱替CH4运移路径上煤体化学结构变化[J]. 煤矿安全, 2013, 44(5): 1-3.
引用本文: 王立国, 李伟. 天然CO2注入煤层驱替CH4运移路径上煤体化学结构变化[J]. 煤矿安全, 2013, 44(5): 1-3.
WANG Li-guo, LI Wei. Study on Coal Chemical Structure Changes During the Migration Path After Coalbed CH4 Replacement by Natural CO2[J]. Safety in Coal Mines, 2013, 44(5): 1-3.
Citation: WANG Li-guo, LI Wei. Study on Coal Chemical Structure Changes During the Migration Path After Coalbed CH4 Replacement by Natural CO2[J]. Safety in Coal Mines, 2013, 44(5): 1-3.

天然CO2注入煤层驱替CH4运移路径上煤体化学结构变化

Study on Coal Chemical Structure Changes During the Migration Path After Coalbed CH4 Replacement by Natural CO2

  • 摘要: 以窑街煤田天然CO2注入煤层并驱替煤层CH4为研究背景,通过在距离CO2注入点不同距离处连续采取煤样,对系列煤样进行红外光谱分析,结果显示:红外光谱谱图波数在2 800~3 000、2 270~2 413、1 000~1 200 cm-1区域吸收峰值发生了不同程度的变化。又对2个煤矿的超临界CO2处理前后的煤样进行红外光谱分析,上述波数的吸收峰强度也发生变化,而且都是处理后的煤样吸收峰强度低一些,进一步证实超临界CO2在运移过程中确实能从煤基质中萃取了脂肪族芳香族碳氢化合物及一部分矿物质。
    Abstract: Based on displacing coalbed methane by the natural CO2 injection in Yaojie coalfield, coal samples and gas samples are taken continuously at different distances away from CO2 injection points. Infrared spectroscopy analysis is done for series of coal samples; the results show that the absorption peaks change significantly in the spectra wavenumbers of 2 800~3 000 cm-1, 2 270~2 413 cm-1, and 1 000~1200 cm-1. Then, the coal samples before and after supercritical CO2 treatment are analyzed from another coal mines, The above-mentioned wavenumbers of the absorption peak intensity also change, and treated coal sample absorption peak intensity is lower. These experiments demonstrate that injection of supercritical CO2 can extract the aliphatic aromatic hydrocarbons and part of the minerals from the coal matrix during the migration path.
  • [1] Goodman AL, Campus LM, Schroeder KT. Direct evidence of carbon dioxiede sorption on Argonne premium coal using attenuated total reflectance-fourier ransform infrared spectroscopy[J].Energy & Fuels, 2005, 19:471-476.
    [2] Mastalerz M., Drobniak A., Rupp J. Meso-and micropore characteristics of coal lithotypes: Implication for CO2 adsorption[J].Energy & Fuels,2008, 22:4049-4061.
    [3] Mastalerz M., Goodman A., Chirdon D. Coal Lithotypes before, during, and after Exposure to CO2:Insights from Direct Fourier Transform Infrared Investigation[J].Energy&Fuels , 2012,26 (6):3586-3591.
    [4] Li W., Cheng Y.P., Wang L. The origin and formation of CO2 gas pools in the coal seam of the Yaojie coalfi eld in China[J].International Journal of Coal Geology,2011,85:227-236.
    [5] 陶明信.窑街煤矿二氧化碳突出的地球化学及构造研究[D].兰州:中国科学院兰州地质研究所,1993.
    [6] 李兆兴,陶明信,徐永昌,等.窑街煤田碳酸盐与突出气体的同位素组成特征[J].沉积学报,1992,10(1):93-101.
    [7] 李伟. 海石湾井田CO2 成藏演化机制及防治技术研究[D].徐州:中国矿业大学,2011.
    [8] Orrego J.A. Hernández R.C., Ospino E.M. Structural study of colombian coal by fourier transform infrared spectroscopy coupled to attenuated total reflectance (FTIR-ATR)[J].REVISTA MEXICANA DE F?SICA,2010, 56(3) :251-254.
    [9] Kolak J.J. Burruss R.C. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds[J].Energy and Fuels, 2006,20 (2): 566-574.
计量
  • 文章访问数:  699
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2013-05-19

目录

    /

    返回文章
    返回