• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于微震时间序列的冲击地压混沌特性分析

陶慧, 马小平, 乔美英

陶慧, 马小平, 乔美英. 基于微震时间序列的冲击地压混沌特性分析[J]. 煤矿安全, 2012, 43(2): 140-143.
引用本文: 陶慧, 马小平, 乔美英. 基于微震时间序列的冲击地压混沌特性分析[J]. 煤矿安全, 2012, 43(2): 140-143.
TAO Hui, MA Xiao-ping, QIAO Mei-ying. Chaos Characteristic Analysis of Microseism Time Series of Rock Burst[J]. Safety in Coal Mines, 2012, 43(2): 140-143.
Citation: TAO Hui, MA Xiao-ping, QIAO Mei-ying. Chaos Characteristic Analysis of Microseism Time Series of Rock Burst[J]. Safety in Coal Mines, 2012, 43(2): 140-143.

基于微震时间序列的冲击地压混沌特性分析

Chaos Characteristic Analysis of Microseism Time Series of Rock Burst

  • 摘要: 冲击地压破坏是一非线性动力学过程,因此基于微震时间序列,采用定性和定量方法深入系统的分析其混沌特性,为冲击地压的混沌预测打下基础。简单介绍了微震监测的基本原理和冲击地压的混沌特征显现。在MATLABR2009b环境下,以微震累计能量时间序列为例,应用功率谱方法确定其具有非周期性;采用主成分分析将其与噪声信号区别开来;计算出其最大Lya-punov 指数>0,判定系统具有混沌特性;计算出的关联维数描述了系统的混沌程度。
    Abstract: Because it is a nonlinear dynamic process,chaos characteristic of rock burst is analyzed systematically and thoroughly on microseism time series to laying a foundation for chaotic prediction.chaos characteristic appearance of rock burst is introduced in this paper.In MATLABR2009b environment,taking the time series of microseism accumulative total energy as an example,aperiodicity is confirmed with power spectrum method;the time series is distinguished from the noise signal by the principal components analysis;chaos characteristic of the system is determined by its maximum lyapunov exponent which is greater than zero;correlation dimension calculated describes its chaotic degree.
  • [1] 齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2010.
    [2] 吕进国,潘立.微震预警冲击地压的时间序列方法[J].煤炭学报,2010,35(12):2 002-2 005.
    [3] 李洪,戴仁竹.基于最大Lyapunov指数的冲击地压预测模型[J].采矿与安全工程学报,2006,23(2):215-219.
    [4] Xie,H P Chen Z D.Fractal geometry and fracture of rock[J].Acta Mechanica Sinica,1988,4(3):255-264.
    [5] 谢和平,Pariseawu W G.岩爆的分形特征及机理[J].岩石力学与工程学报,1993,12(l):28-37.
    [6] 黄滚,尹光志.冲击地压粘滑失稳的混沌特性[J].重庆大学学报,2009,2(6):633-637.
    [7] Gibowicz S J,Kijko A.An introduction to mining seis-mology[M].Poland:Acadermic Press,2000.
    [8] Hilborn R C.Chaos and nonlinear dynamics:an intro-duction for scientists and engineers[M].New York:Ox-ford University Press,2000.
    [9] 代高飞.岩石非线性动力学特征及冲击地压的研究[D].重庆:重庆大学,2003.
    [10] 吕金虎,陆军安,陈世华.混沌时间序列分析及其应用[M].湖北:武汉大学出版社,2002.
    [11] Mills K C,Fox A B,Li Z.Performance and properties ofmould fluxes[J].Ironmaking and Steelmaking,2005,32(1):26-34.
    [12] Spears B K,Szeri A J.A new route to chaos:sequencesof topological torus bifurcations[J].Chaos,2005,15(3):33 108-33 126.
    [13] Glass L.Introduction to controversial topics in nonlinearscience:is the normal heart rate chaotic[J].Chaos.2009,19(2):28 501-28 505.
    [14] Rosenstein M T,Collins J J,Deluca C J.Reconstruc-tion expansion as a geometrybased framework for choo-sing proper delay times[J].Physical D,1994(73):82-98.
    [15] Misra R L,Harikrishnan K P,Ambika G.A non-sub-jective approach to the GP algorithm for analysing noisytime series[J].Physical D,2006,215(2):137-45.
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2012-02-09

目录

    /

    返回文章
    返回